
Sage. (Version 3.4) www.sagemath.org. Free,
with GNU Public License (GPL).

Sage is software for mathematics. To the unini-
tiated, this statement might sound unimpressive,
or even obvious, but the readers of SIAM Re-
view clearly recognize the challenges of represent-
ing the infinite and the continuous in a machine
that is finite and discrete. For example, consider
just the vagaries of floating-point arithmetic. A
better description, that concisely captures the
essence of Sage, comes from project’s Mission:
“Creating a viable free open-source alternative
to Magma, Maple, Mathematica and Matlab.”
While Sage continues to improve and expand at
a dramatic pace, it has come a long way toward
meeting its goals. Stable and fast algorithms are
provided for much of the mathematical universe,
including symbolic, exact, numerical and graph-
ical capabilities. A notebook interface runs in a
web browser and provides a convenient and pro-
ductive environment for using all of Sage’s fea-
tures. The user and developer communities have
also expanded dramatically. All of this is based
on open-source software, open standards and an
open development process.

Borne of his frustration with proprietary pro-
grams providing similar functionality, William
Stein founded Sage in 2005 and continues to lead
the project. He wondered how you could rely
on software for research in mathematics if you
had little or no knowledge of the algorithms and
code producing those results? He believed rapid
progress in scientific research had always been
predicated on an open exchange of ideas, and so
it should be with software for mathematics. Since
2005 the project has attracted a very large user
community, as measured by these recent monthly
statistics provided by Harald Schilly, the Sage
website and forum manager: 2,000 forum posts
generated and viewed by the 2,000 forum mem-
bers, 6,000 downloads of the program and 60,000
visits to the website. Contributors to the code
are an international group numbering 150, while
at any one time roughly 40 of these developers
are working assiduously on projects or improve-
ments. Major funding sources are University of
Washington, University of California San Diego,
National Science Foundation, Google, Microsoft,
Sun and the US Department of Defense.

The genius of Sage is its leveraging of other
open-source software projects. There are many
mature and stable software projects devoted to
relatively narrow areas of mathematics whose au-

thors have released the source code under open
licenses, such as the statistics package R and the
scientific computing package SciPy. Since Sage
is made available with a compatible license, it
is allowed to directly integrate this functionality.
This brings open, well-tested and very fast algo-
rithms into the project at a cost of simply pro-
viding an interface between Sage and the added
code. This also allows the vast majority of de-
velopment work to focus on adding new features
and algorithms to the current 300,000 lines of
new code, rather than duplicating existing work.
Often this work is done by specialists provid-
ing tools for their own research and teaching
(“scratching their own itch” in open-source par-
lance). Sage provides the infrastructure, both in
terms of a work environment and common basic
mathematical functions, that allows specialists to
concentrate on algorithms and new features.

Sage’s approach has been to add functional-
ity wherever possible through existing packages,
and then provide new code where no open-source
package exists or speed improvements are pos-
sible. An early slogan was, “Building the car,
not reinventing the wheel.” An early choice of
the Sage project was to use Python as the prin-
cipal language of the project. Many system ad-
ministrators like to use Python as “glue code”
to cobble together different programs and com-
mands into a single script that automates main-
tenance tasks. Sage exemplifies this philosophy
to an extreme. It has been a good choice because
many smaller projects, both for mathematics and
the associated infrastructure of a large program,
have been written in Python, ported to Python,
or provide interfaces to C/C++ code via Python.
Two examples are the SciPy and NumPy pack-
ages, which are used heavily in Sage. NumPy
provides critical high-dimension array manipula-
tions, and SciPy builds on NumPy to provide a
variety of mathematical tools such as numerical
integration, differential equation solvers, and lin-
ear algebra routines. While SciPy is an open-
source project, it is sponsored by a commercial
company, Enthought, that in turn specializes in
providing scientific applications to clients based
on Python software.

Sage is created and maintained by a world-wide
pool of developers, but actual changes are coordi-
nated by a release manager. Much of Sage’s sta-
bility is due to Michael Abshoff’s tenure as sole
release manager from January 2008 to May 2009,
while more typically the duties rotate through
developers such William Stein, Carl Witty, Mar-

tin Albrecht, Robert Miller, Mike Hansen, Craig
Citro, Nick Alexander, Tom Boothby and Minh
Van Nguyen. Part of Sage’s stability comes from
requiring every change to receive a positive re-
view by another Sage developer before being
added, not unlike the review of a journal article
by a referee. Similar to the Linux kernel devel-
opment process, all approved changes are then
integrated into the official version by a release
manager. There is an automated test system for
catching unintended effects in other areas, pro-
viding more safeguards for the high quality of the
code as tests are performed after making changes
and interested volunteers test preliminary ver-
sions on a variety of hardware. It is important to
realize that Sage contains everything you need to
use all of its features. You can install it anywhere
you like — your desktop, a laptop, a USB thumb
drive or personal space on a shared server. It has
no dependencies and does not require adminis-
trative privileges to install or run. The included
packages are up-to-date and tested to work with
each other. Sage is very serious about compil-
ing, installing and running easily on a wide vari-
ety of hardware. Binary distributions are avail-
able for eight popular Linux distributions (32-
and 64-bit each), Mac OSX (Intel and PowerPC),
Windows, plus more exotic configurations such
as Sun Solaris, the Intel Atom chip for netbooks,
and the Itanium chip. At this writing, the best
way to run on Windows is within a virtual ma-
chine, and therefore this version is distributed as
a VMware image for the freely available player.
A native Windows port is an ongoing project.
With a relatively current compiler installed (as
provided by most Linux distributions and Mac
OSX) it is almost as easy to just compile all of
Sage from source since it takes just a few simple
commands to initiate the compilation. But be
prepared to wait several hours, Sage is big. As
an extreme example that illustrates the robust-
ness of Sage’s build system, Carl Witty, a Sage
developer, downloaded the Sage source code to
his Google Android G1 cell phone, and after a
total of 15 days of compile time and 3 days of
automated testing, he eventually had a working
command line version.

Sage can be run from its own command line,
which is useful for batch processes. However, for
a new user or a student, the notebook interface is
one of the strongest features. With Sage running
in server mode, either on the same computer or
remotely, a user may execute Sage commands via
a web page. You can experiment with Sage, and

this interface, by quickly creating an account on
the public and free server located at sagenb.org
and logging in and working through the tutorial
[1]. The notebook is a collection of web pages,
which are known as worksheets. Each worksheet
is a sequence of input and output cells. An input
cell is a sequence of Sage commands which can
be evaluated as a group, with the object on the
final line being displayed. Print commands can
be used to output intermediate calculations. As
Python is an interpreted language, the results are
immediate, encouraging exploration and experi-
mentation. With tab-completion it is easy to see
exactly which commands are available for an ob-
ject. The statement A.determinant? will bring
up brief but helpful documentation for the deter-
minant of the matrix A, while A.determinant??
will bring up the source code for this command.

Because Sage is written in Python, it is most
natural to construct programs calling Sage rou-
tines in Python, though it is not necessary to
know any Python to use Sage effectively. A full
working copy of Python is included in the distri-
bution, and from the command line or the note-
book, there is no overhead to immediately writ-
ing routines in Python. It is even possible that a
user will learn some Python syntax without even
realizing it. This is in contrast to the proprietary
or one-off languages used by similar programs.
Sage contains a Fortran compiler, which can be
activated with a single line of code, and Fortran
routines can be called from Python code with
the included f2py utility. A spin-off of Sage is
the Cython project, which builds on work of the
Pyrex project. This project defines additional
syntax for Python that in turn enables the gen-
eration of compiled C code and interfaces to C
routines. Many new routines in Sage begin as
interpreted Python and once stable are modified
easily and quickly to Cython for the resultant
speed improvement. Sage also includes interfaces
to Axiom, Maple, Mathematica, Matlab, MuPad,
and Octave, provided you have legitimate licenses
for those programs in this list that are propri-
etary. So you can gain the benefits of the Sage
notebook without orphaning any existing code.

Every mathematical object in Sage can be out-
put in the typesetting language LATEX and the
notebook includes the open-source software js-
Math for displaying LATEX properly in a web
page via Javascript commands. So it is possible
to automatically (via one checkbox) have high-
quality output. Or you can output the raw LATEX
output to paste into another document. Addi-

tionally, Sage makes available through Javascript
the open-source TinyMCE mini-word-processor
so that it is possible to annotate a worksheet.
Entering small snippets of LATEX in the word-
processor will cause jsMath to render the math-
ematics properly upon exiting TinyMCE. Three-
dimensional plots are rendered in an open-source
Java applet, JMOL, originally built for chemists
to visualize molecules, but adapted by Sage to
render, rotate, and zoom surfaces, data, or curves
in space. Worksheets are designed to be pub-
lished at publicly accessible URLs or shared
among a small group of collaborators. There is
simple-to-use infrastructure to create sliders, in-
put fields, and checkboxes in the output of a cell,
such that the output responds to changes in the
inputs. So for example, a slider might control
the degree of a Taylor polynomial and the out-
put would include a plot of both the original func-
tion and the approximation (see examples at [2]).
Such a demonstration could be accompanied by
notes written in the word-processor. The work-
sheet is a comfortable place to learn Sage (and
Python and LATEX) with obvious applications in
education. For the researcher it is a comfortable
place to test new applications before scaling up
to production runs via the command line.

Sage is a big and fast-moving target. Not sur-
prisingly in a young open-source project, docu-
mentation tends to lag. However, right in the
source code for a command there is almost always
a fairly complete explanation of input options
and an explanation of the output, along with
a collection of examples. Extending this cover-
age to 100% is one of the current priorities. One
can construct an object (e.g. a function, matrix,
ring,. . .) and use tab-completion to see just the
functions possible for this object, and this is often
a quick and easy way to get started experiment-
ing with a new area within Sage. Even better are
the very active online forums, including: sage-
support for help with routine questions, sage-edu
for discussions of educational applications, and
sage-devel for technical and design discussions,
in addition to specialized forums for number the-
ory and combinatorics and active Internet Relay
Chat (IRC) channels for both support and devel-
opment. Developers, including William Stein and
the release managers, frequent the support ar-
eas and are quick to offer assistance or recognize
bugs that need attention. It is a civil, enthusias-
tic and helpful community, with flame wars dis-
tinguished mostly by their extreme rarity. Well-
formed questions are often handled quickly and

accurately. Suggestions for new packages or func-
tionality are welcome.

Sage is big and ambitious. What parts are of
most interest to readers of SIAM Review? First,
Sage does not have an easily discernible bias
between symbolic, exact and numerical arenas.
Symbolic manipulation is provided by a variety
of different packages and some of the more noto-
riously difficult areas are a current focus of Sage
development. With research in number theory as
an early motivation, support for exact mathemat-
ics is impressive. Sage strives to represent mathe-
matics as a mathematician views it. For example,
in Mathematica the command NullSpace[A] will
return a list of basis vectors for the null space of
the matrix A, rather than a vector space. In
Sage, the command W = A.kernel() will return
a vector space W, which is a variable that can be
further inspected with commands appropriate to
a vector space, such as W.basis() returning a list
of basis vectors, if that is what is desired. It is a
subtle, but very important distinction. Similarly,
in Sage you are allowed, or required (depending
on your perspective), to specify the base ring or
field you are working over. For example, the syn-
tax R.<x> = ZZ[] defines the ring R, of polyno-
mials in x over the integers, while R.<x> = QQ[]
defines R over the rationals, and R.<x> = CC[]
defines R over the complex numbers. Now de-
fine a polynomial in x by p = 2*x^3+x^2+2*x+1.
Depending on the definition of R, the command
p.factor() will return (2x+ 1)(x2 + 1) over the
integers, 2(x+ 1

2)(x2 + 1) over the rationals and
2(x+ 1

2)(x−i)(x+i) over the complexes. This can
be a source of confusion for the novice. However,
it accurately mirrors actual practice in mathe-
matics and in the long-run the necessary pre-
cision and clarity make it possible for Sage to
more directly and easily provide correct answers
in more complicated situations.

Arbitrary precision computations are equally
at home in Sage. For example a matrix
could be simply specified over a “field” of
real numbers with 200 bits of precision as C
= matrix(RealField(200), [[1,2],[3,4]]).
Consistent with Sage’s approach, this field
employs the routines of the open-source MPFR
package for multi-precision floating-point num-
bers with correct rounding. For a random
1000 × 1000 matrix of double-precision reals
(the field RDF in Sage syntax) a determinant
is computed via the SciPy, NumPy and BLAS
packages in about 0.1 seconds on $500 hardware.
When the ring is changed to the integers, the

open-source IML library for integer matrix
computations is employed instead. Then the
roughly 3,0000 digits of the determinant of
a random 1000 × 1000 matrix are computed
exactly, though the computation time grows to
about 12 seconds.

A few examples of useful open-source packages
for applied mathematicians that are integrated
into Sage are: SciPy and NumPy for numeri-
cal and scientific computing with Python that
captures much of the functionality of Matlab;
the complete R program for statistical analysis;
CVXOPT for linear programming and similar op-
timization problems; the GNU Scientific Library
(GSL) for fast Fourier transforms and numerical
differential equations; ATLAS, BLAS, LAPACK,
Linbox, M4RI and NumPy all for linear algebra.

One particular example might highlight the ap-
plication of Sage in an area of applied mathe-
matics. Ahmed Fasih is Ph.D. student at Ohio
State University in the Department of Electrical
and Computer Engineering studying radar sig-
nal processing algorithms and automatic signal
analysis. His current work involves tracking mov-
ing vehicles with synthetic aperture radar data,
specifically computing bounds for the minimum
covariance of estimators of position, velocity, and
complex amplitude of an electromagnetic scat-
terer in radar. In the course of this work, in-
tegrating functions with maximums of e−1000 or
smaller became impossible to compute in Mat-
lab. Then he found Sage and the included open-
source Mpmath package, providing the necessary
support for both arbitrary precision arithmetic
and quadrature integration. Mpmath is another
example of a specialized project that is an im-
portant component of Sage, and a recent NSF-
funded joint project has strengthened this re-
lationship. Converting his Matlab routines for
Sage, Ahmed employed native Sage support for
parallelizing the integrations on subintervals to
submit 128 simultaneous jobs on 4-core nodes
without any license infringements, and cutting
his runtime by a factor of 500.

Ahmed obtained more accurate results, and
better insights into his research application. He
also reports the advantages of Sage containing all
the bits he needed, packaged together to work to-
gether, and the freedom from the limits and has-
sles of licensing limits and needing administrative
privileges on target machines. There is even a
popular open-source distributed version-control
system, Mercurial, that is packaged with Sage
and was useful for his research group. He reports

the roughest patch was initially understanding all
the data type conversions for numbers and vec-
tors between Sage, Python and Mpmath, but in
the spirit of open-source development, he plans to
use his experience to help the author of mpmath
to simplify the situation for others. Presently,
for a course in parallel computing architectures,
he is experimenting with the PyCUDA package
from within Sage, which is a Python interface to
the CUDA C framework. This is an initiative to
employ nVidia graphics cards as computational
engines for intensive parallel computations (be-
sides just computer games).

I resolved at the start of the 2008-09 academic
year to learn Sage by using it every reasonable
chance I got, abandoning a 20-year investment
in Mathematica. The straightforward interface
to the open-source package GAP (Groups, Al-
gorithms and Programming) was uncomplicated
enough to allow me to integrate a computational
approach to group theory into my introductory
course for the first time. The exact linear al-
gebra routines are useful as I extend my linear
algebra textbook, especially being able to sim-
ply cut and paste the LATEX output from Sage to
the book. In multivariable calculus the 3-D plots
have been invaluable, such as a plot of the degree
16 two-variable Taylor polynomial approximat-
ing f(x, y) = sin(x) cos(y) on [−π, π] × [−π, π],
with Sage computing the 154 necessary partial
derivatives symbolically. I’ve been trading simi-
lar worksheets for this course with Jason Grout
at Iowa State University and Robert Mař́ık at
Mendel University in the Czech Republic, of-
ten by publishing worksheets off the Sage public
server. Sage will see significant action as I finish
an integral calculus course this term with infi-
nite series and Taylor polynomials. Preparing an
upcoming presentation will give me an excuse to
learn more about Sage’s graph theory routines.

Sage is big, and there is much to explore and
use in your professional activities as a mathe-
matician. It is an impressive concentration and
unification of mathematical knowledge. The re-
liance on mature open-source packages and open
standards provides a measure of confidence and
future-proofing. There are a few rough edges as
the project matures, but this also provides the
opportunity to get involved and influence devel-
opment. But see for yourself by experimenting
at the public server (sagenb.org) along with the
over 5,000 others who have accounts there, or
simply install your own copy on your favorite
hardware. Either way, its free.

Acknowledgments This review has benefited
greatly from the help of the Sage community,
specifically Michael Abshoff, Robert Bradshaw,
Craig Citro, Ahmed Fasih, Jason Grout, Mike
Hansen, David Joyner, Josh Kantor, Nancy Neu-
dauer, Harald Schilly, and William Stein. Their
assistance is greatly appreciated.

References

[1] Sage Tutorial,
http://sagemath.org/doc/tutorial/index.html.

[2] Sage Wiki Interactions,
http://wiki.sagemath.org/interact

Robert A. Beezer
University of Puget Sound

An edited version of this review will appear in SIAM

Review as part of the Book Review section.

