Show all of your work and explain your answers fully. There is a total of 90 possible points.

1. Consider the matrix A below. (30 points)

$$
A=\left[\begin{array}{rrrrr}
1 & 2 & 0 & 2 & 0 \\
-1 & 1 & -3 & -2 & 3 \\
4 & 3 & 4 & 7 & -5
\end{array}\right]
$$

(a) Find a basis for the null space of $A, N(A)$.
(b) Find a basis for the range of $A, R(A)$.
(c) Find another basis for the range of $A, R(A)$, by using a substantially different method.
2. Let $S \subseteq \mathbb{R}^{4}$ be the set of vectors below. (12 points)
$S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}=\left\{\left[\begin{array}{r}1 \\ 2 \\ -1 \\ 3\end{array}\right],\left[\begin{array}{r}2 \\ 1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{r}4 \\ -6 \\ 1 \\ 3\end{array}\right]\right\}$
(a) Is S an orthogonal set? An orthonormal set?
(b) Is S a basis of \mathbb{R}^{4} ?
3. Suppose W is a subspace of \mathbb{R}^{5} with dimension 3 . Which of the following sets of vectors from W are bases of W ? (18 points)
(a) $\left\{\left[\begin{array}{r}-9 \\ 8 \\ 0 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{r}20 \\ -13 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{r}-9 \\ 8 \\ 0 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{r}18 \\ -13 \\ -1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{r}9 \\ -5 \\ -1 \\ 2 \\ 0\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{r}7 \\ -5 \\ -3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}11 \\ 5 \\ 1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{r}-7 \\ 8 \\ 2 \\ 1 \\ -3\end{array}\right]\right\}$
4. Write a careful proof that $W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid 3 x_{1}-5 x_{2}+x_{3}=0\right\}$ is a subspace of \mathbb{R}^{3}. (15 points)
5. Suppose that $B=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}\right\}$ is a basis of the subspace $V \subseteq \mathbb{R}^{n}$ (so in particular, $m \leq n$), and that $\mathbf{w} \in V$ is any vector from V. Prove that there is exactly one set of scalars $a_{1}, a_{2}, \ldots, a_{m}$ so that \mathbf{w} can be written in the form $\mathbf{w}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{m} \mathbf{v}_{m}$. (15 points)

