Name:

Show all of your work and explain your answers fully. There is a total of 90 possible points.

1. Consider the matrix A below. (30 points)

 $A = \left[\begin{array}{rrrrr} 1 & 2 & 0 & 2 & 0 \\ -1 & 1 & -3 & -2 & 3 \\ 4 & 3 & 4 & 7 & -5 \end{array} \right]$

(a) Find a basis for the null space of A, N(A).

(b) Find a basis for the range of A, R(A).

(c) Find another basis for the range of A, R(A), by using a substantially different method.

2. Let $S \subseteq \mathbb{R}^4$ be the set of vectors below. (12 points)

$$S = \{\mathbf{v_1}, \, \mathbf{v_2}, \, \mathbf{v_3}\} = \left\{ \begin{bmatrix} 1\\2\\-1\\3 \end{bmatrix}, \, \begin{bmatrix} 2\\1\\1\\-1 \end{bmatrix}, \, \begin{bmatrix} 4\\-6\\1\\3 \end{bmatrix} \right\}$$

- (a) Is S an orthogonal set? An orthonormal set?
- (b) Is S a basis of \mathbb{R}^4 ?
- 3. Suppose W is a subspace of \mathbb{R}^5 with dimension 3. Which of the following sets of vectors from W are bases of W? (18 points)

	1	г о			\
		-9		20	
		8		-13	
(a)	{	0	,	1	}
		1		1	
	l	$\lfloor -2 \rfloor$		1	J

(b)
$$\left\{ \begin{bmatrix} -9\\8\\0\\1\\-2 \end{bmatrix}, \begin{bmatrix} 18\\-13\\-1\\1\\2\\2 \end{bmatrix}, \begin{bmatrix} 9\\-5\\-1\\2\\0\\0 \end{bmatrix} \right\}$$

(c)
$$\begin{cases} \begin{bmatrix} 7\\ -5\\ -3\\ 2\\ 1 \end{bmatrix}, \begin{bmatrix} 11\\ 5\\ 1\\ 2\\ -1 \end{bmatrix}, \begin{bmatrix} -7\\ 8\\ 2\\ 1\\ -3 \end{bmatrix} \end{pmatrix}$$

4. Write a careful proof that $W = \{(x_1, x_2, x_3) \mid 3x_1 - 5x_2 + x_3 = 0\}$ is a subspace of \mathbb{R}^3 . (15 points)

5. Suppose that $B = {\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_m}}$ is a basis of the subspace $V \subseteq \mathbb{R}^n$ (so in particular, $m \leq n$), and that $\mathbf{w} \in V$ is any vector from V. Prove that there is exactly one set of scalars a_1, a_2, \ldots, a_m so that \mathbf{w} can be written in the form $\mathbf{w} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3 + \cdots + a_m\mathbf{v}_m$. (15 points)