Show all of your work and explain your answers fully. There is a total of 100 possible points.

1. Let \mathbb{R}^{3} be the usual Euclidean vector space and let P_{3} be the vector space of all polynomials with degree 3 or less. Consider the two bases $C=\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ 3 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 4 \\ 3\end{array}\right]\right\}$ and $D=\left\{1, x, x^{2}, x^{3}\right\}$. Define a linear transformation $T: \mathbb{R}^{3} \rightarrow P_{3}$ by $T\left(\left[\begin{array}{l}a \\ b \\ c\end{array}\right]\right)=(2 a+c)+(3 a-4 b+c) x-6 c x^{2}+(a+b+c) x^{3}$. Form the matrix representation of T relative to C and D. (15 points)
2. Let P_{1} be the vector space of polynomials with degree 1 or less, and let M_{12} be the vector space of 1×2 matrices. Define the function $T: P_{1} \rightarrow M_{12}$ by $T(a+b x)=\left[\begin{array}{ll}3 a-2 b & a+4 b\end{array}\right]$. Prove that T is a linear transformation. (15 points)
3. Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined below. Is T one-to-one? Onto? (20 points) $T\left(\left[\begin{array}{l}a \\ b \\ c\end{array}\right]\right)=\left[\begin{array}{c}3 a+2 b-c \\ a-b+4 c\end{array}\right]$
4. Consider the linear transformation $S: P_{2} \rightarrow P_{2}$ defined below. Find a basis of P_{2} that will yield a diagonal representation of S, and specify that representation. (20 points)
$S\left(a+b x+c x^{2}\right)=(3 a-b-c)+(-12 a+5 c) x+(4 a-2 b-c) x^{2}$
5. Suppose that U and V are finite-dimensional vector spaces with $\operatorname{dim}(U)<\operatorname{dim}(V)$ and that $T: U \rightarrow$ V is a linear transformation. Prove that T cannot be onto. (15 points)
6. Suppose that U and V are finite-dimensional vector spaces and $C=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is a basis of U. Suppose that $T: U \rightarrow V$ and $S: U \rightarrow V$ are linear transformations such that $T\left(\mathbf{u}_{i}\right)=S\left(\mathbf{u}_{i}\right)$ for $1 \leq i \leq n$. Prove that $S=T$. (15 points)
