Name:

Math 232 Quiz #6Sections 5.7–5.10

Show all of your work and explain your answers fully. There is a total of 100 possible points.

1. Let \mathbb{R}^3 be the usual Euclidean vector space and let P_3 be the vector space of all polynomials with degree 3 or less. Consider the two bases $C = \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\3\\2 \end{bmatrix}, \begin{bmatrix} 0\\4\\3 \end{bmatrix} \right\}$ and $D = \{1, x, x^2, x^3\}$. Define a linear transformation $T : \mathbb{R}^3 \to P_3$ by $T\left(\begin{bmatrix} a\\b\\c \end{bmatrix} \right) = (2a+c) + (3a-4b+c)x - 6cx^2 + (a+b+c)x^3$. Form the matrix representation of T relative to C and D. (15 points)

2. Let P_1 be the vector space of polynomials with degree 1 or less, and let M_{12} be the vector space of 1×2 matrices. Define the function $T: P_1 \to M_{12}$ by $T(a+bx) = [3a-2b \quad a+4b]$. Prove that T is a linear transformation. (15 points)

3. Consider the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined below. Is T one-to-one? Onto? (20 points)

$$T\left(\begin{bmatrix}a\\b\\c\end{bmatrix}\right) = \begin{bmatrix}3a+2b-c\\a-b+4c\end{bmatrix}$$

4. Consider the linear transformation $S: P_2 \to P_2$ defined below. Find a basis of P_2 that will yield a diagonal representation of S, and specify that representation. (20 points)

 $S(a + bx + cx^{2}) = (3a - b - c) + (-12a + 5c)x + (4a - 2b - c)x^{2}$

5. Suppose that U and V are finite-dimensional vector spaces with $\dim(U) < \dim(V)$ and that $T: U \to V$ is a linear transformation. Prove that T cannot be onto. (15 points)

6. Suppose that U and V are finite-dimensional vector spaces and $C = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n}$ is a basis of U. Suppose that $T: U \to V$ and $S: U \to V$ are linear transformations such that $T(\mathbf{u}_i) = S(\mathbf{u}_i)$ for $1 \le i \le n$. Prove that S = T. (15 points)