Name: Key

Show all of your work and explain your answers fully. There is a total of 95 possible points.

1. Find the vector form of the solutions to the system of equations below. (15 points)

 $2x_1 - 4x_2 + 3x_3 + x_5 = 6$ $x_1 - 2x_2 - 2x_3 + 14x_4 - 4x_5 = 15$ $x_1 - 2x_2 + x_3 + 2x_4 + x_5 = -1$ $-2x_1 + 4x_2 - 12x_4 + x_5 = -7$

Solution: Row-reduce the augmented matrix representing this system, to find

$\left[1 \right]$	$-2 \\ 0 \\ 0 \\ 0 \\ 0$	0	6	0	1]
0	0	1	-4	0	$\begin{array}{c}1\\3\\-5\\0\end{array}$
0	0	0	0	1	-5
0	0	0	0	0	0]

The system is consistent (no leading one in column 6, Theorem RCLS). x_2 and x_4 are the free variables. Now apply Theorem VFSLS, or follow the three-step process of Example SS.VFSADI, Example SS.VFSAL to obtain

$\begin{bmatrix} x_1 \end{bmatrix}$		[1]		$\lceil 2 \rceil$		[-6]
x_2		0		1		0
x_3	=	3	$+x_{2}$	0	$+x_{4}$	4
x_4		0		0		1
x_5		$\begin{bmatrix} -5 \end{bmatrix}$		0		

2. For the matrix A below, find a set of vectors S so that (1) S is linearly independent, and (2) the span of S equals the null space of A, Sp(S) = N(A). (15 points)

	1	1	6	-8
A =	1	-2	0	$\begin{bmatrix} -8\\1 \end{bmatrix}$
	-2	1	-6	7

Solution: Theorem BNS says that if we find the vector form of the solutions to the homogeneous system $LS(A, \mathbf{0})$, then the fixed vectors (one per free variable) will have the desired properties. Row-reduce A, viewing it as the augmented matrix of a homogeneous system with an invisible columns of zeros as the last column,

$\left[1 \right]$	0	4	-5
0	1	2	-3
0	0	0	0

Moving to the vector form of the solutions (Theorem VFSLS), with free variables x_3 and x_4 , solutions to the consistent system (it is homogenous, Theorem HSC) can be expressed as

$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$		$\begin{bmatrix} -4 \\ -2 \end{bmatrix}$		$\begin{bmatrix} 5\\ 3 \end{bmatrix}$
$\begin{vmatrix} x_2 \\ x_3 \end{vmatrix}$	$=x_3$	1	$+x_{4}$	0
$\lfloor x_4 \rfloor$		0		$\lfloor 1 \rfloor$

Then with S given by

$$S = \left\{ \begin{bmatrix} -4\\-2\\1\\0 \end{bmatrix}, \begin{bmatrix} 5\\3\\0\\1 \end{bmatrix} \right\}$$

Theorem BNS guarantees the set has the desired properties.

3. Suppose that
$$S = \left\{ \begin{bmatrix} 2\\-1\\3\\4 \end{bmatrix}, \begin{bmatrix} 3\\2\\-2\\1\\1 \end{bmatrix} \right\}$$
. Let $W = \operatorname{Sp}(S)$. (15 points)
(a) Let $\mathbf{x} = \begin{bmatrix} 5\\8\\-12\\-5 \end{bmatrix}$. Is $\mathbf{x} \in W$? If so, provide an explicit linear combination that demonstrates this.

Solution: Rephrasing the question, we want to know if there are scalars α_1 and α_2 such that

α_1	$\begin{bmatrix} 2\\-1\\3\\4 \end{bmatrix}$	$+ \alpha_2$	$\begin{bmatrix} 3\\2\\-2\\1 \end{bmatrix}$	=	$\begin{bmatrix} 5\\ 8\\ -12\\ -5 \end{bmatrix}$	
------------	---	--------------	---	---	--	--

Theorem SLSLC allows us to rephrase the question again as a quest for solutions to the system of four equations in two unknowns with an augmented matrix given by

$\lceil 2 \rangle$	3	5]
-1	2	8
3	-2	-12
4	1	-5

This matrix row-reduces to

$\lceil 1 \rceil$	0	-2
0	1	3
0	0	0
0	0	0

From the form of this matrix, we can see that $\alpha_1 = -2$ and $\alpha_2 = 3$ is an affirmative answer to our question. More convincingly,

$$(-2)\begin{bmatrix}2\\-1\\3\\4\end{bmatrix} + (3)\begin{bmatrix}3\\2\\-2\\1\end{bmatrix} = \begin{bmatrix}5\\8\\-12\\-5\end{bmatrix}$$

(b) Let $\mathbf{y} = \begin{bmatrix} 5\\1\\3\\5 \end{bmatrix}$. Is $\mathbf{y} \in W$? If so, provide an explicit linear combination that demonstrates this.

Solution: Rephrasing the question, we want to know if there are scalars α_1 and α_2 such that

$$\alpha_1 \begin{bmatrix} 2\\-1\\3\\4 \end{bmatrix} + \alpha_2 \begin{bmatrix} 3\\2\\-2\\1 \end{bmatrix} = \begin{bmatrix} 5\\1\\3\\5 \end{bmatrix}$$

Theorem SLSLC allows us to rephrase the question again as a quest for solutions to the system of four equations in two unknowns with an augmented matrix given by

 $\begin{bmatrix} 2 & 3 & 5 \\ -1 & 2 & 1 \\ 3 & -2 & 3 \\ 4 & 1 & 5 \end{bmatrix}$

This matrix row-reduces to

0	0]
1	0
0	1
0	0
	0 0

With a leading 1 in the last column of this matrix (Theorem RCLS) we can see that the system of equations has no solution, so there are no values for α_1 and α_2 that will allow us to conclude that **y** is in W. So $\mathbf{y} \notin W$.

4. Determine if the sets of vectors below are linearly independent or linearly dependent. (20 points)

		L		2		1	
(a)	{	-2	,	-1	,	5	}
		$\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$		3		$\begin{bmatrix} 0 \end{bmatrix}$	J

Solution: With three vectors from \mathbb{C}^3 , we can form a square matrix by making these three vectors the columns of a matrix. We do so, and row-reduce to obtain,

$\lceil 1 \rceil$	0	0]
0	1	0
0	0	1

the 3×3 identity matrix. So by NSME2 the original matrix is nonsingular and its columns are therefore a linearly independent set.

		[-1]		3		$\begin{bmatrix} 7 \end{bmatrix}$)	
(h)	J	$\begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix}$		3		3		
(b)	Ì	4	,	-1	,	-6		>
		$\begin{array}{c} 4\\ 2 \end{array}$		$\begin{bmatrix} 3\\ 3\\ -1\\ 3 \end{bmatrix}$		$\begin{bmatrix} 7\\ 3\\ -6\\ 4 \end{bmatrix}$	J	

Solution: Corollary LIVRN says we can answer this question by putting theses vectors into a matrix as columns and row-reducing. Doing this we obtain,

$\lceil 1 \rceil$	0	0]
0	1	0
0	0	1
0	0	0

With n = 3 (3 vectors, 3 columns) and r = 3 (3 leading 1's) we have n = r and the corollary says the vectors are linearly independent.

(c)
$$\left\{ \begin{bmatrix} 1\\5\\1 \end{bmatrix}, \begin{bmatrix} 6\\-1\\2 \end{bmatrix}, \begin{bmatrix} 9\\-3\\8 \end{bmatrix}, \begin{bmatrix} 2\\8\\-1 \end{bmatrix}, \begin{bmatrix} 3\\-2\\0 \end{bmatrix} \right\}$$

Solution: Five vectors from \mathbb{C}^3 . Theorem MVSLD says the set is linearly dependent. Boom.

5. Consider the set of vectors from \mathbb{C}^3 , W, given below. Find a set T that contains three vectors and W = Sp(T). (15 points)

$$W = \operatorname{Sp}\left(\{\mathbf{v}_1, \, \mathbf{v}_2, \, \mathbf{v}_3, \, \mathbf{v}_4, \, \mathbf{v}_5\}\right) = \operatorname{Sp}\left(\left\{\begin{bmatrix}2\\1\\1\end{bmatrix}, \, \begin{bmatrix}-1\\-1\\1\end{bmatrix}, \, \begin{bmatrix}1\\2\\3\end{bmatrix}, \, \begin{bmatrix}3\\1\\3\end{bmatrix}, \, \begin{bmatrix}0\\1\\-3\end{bmatrix}\right\}\right)$$

Solution: We want to find some relations of linear dependence on $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5\}$ that will allow us to "kick out" some vectors, in the spirit of Example SS.SCAD and Example LI.RS. To find relations of linear dependence, we formulate a matrix A whose columns are $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5$. Then we consider the homogeneous system of equations $LS(A, \mathbf{0})$ by row-reducing its coefficient matrix (remember that if we formulated the augmented matrix we would just add a column of zeros). After row-reducing, we obtain

$\left[1 \right]$	0	0	2	-1
0	1	0	1	-2
0	0	1	0	0

From this we that solutions can be obtained employing the free variables x_4 and x_5 . With appropriate choices we will be able to conclude that vectors \mathbf{v}_4 and \mathbf{v}_5 are unnecessary for creating W via a span. By Theorem SLSLC the choice of free variables below lead to solutions and linear combinations, which are then rearranged.

$$\begin{array}{lll} x_4 = 1, x_5 = 0 & \Rightarrow & (-2)\mathbf{v}_1 + (-1)\mathbf{v}_2 + (0)\mathbf{v}_3 + (1)\mathbf{v}_4 + (0)\mathbf{v}_5 = \mathbf{0} & \Rightarrow & \mathbf{v}_4 = 2\mathbf{v}_1 + \mathbf{v}_2 \\ x_4 = 0, x_5 = 1 & \Rightarrow & (1)\mathbf{v}_1 + (2)\mathbf{v}_2 + (0)\mathbf{v}_3 + (0)\mathbf{v}_4 + (1)\mathbf{v}_5 = \mathbf{0} & \Rightarrow & \mathbf{v}_5 = -\mathbf{v}_1 - 2\mathbf{v}_2 \end{array}$$

Since \mathbf{v}_4 and \mathbf{v}_5 can be expressed as linear combinations of \mathbf{v}_1 and \mathbf{v}_2 we can say that \mathbf{v}_4 and \mathbf{v}_5 are not needed for the linear combinations used to build W. Thus

$$W = \operatorname{Sp}\left(\{\mathbf{v}_1, \, \mathbf{v}_2, \, \mathbf{v}_3\}\right) = \operatorname{Sp}\left(\left\{ \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \, \begin{bmatrix} -1\\-1\\1 \end{bmatrix}, \, \begin{bmatrix} 1\\2\\3 \end{bmatrix}\right\}\right)$$

There are other answers to this question, but notice that any nontrvial linear combination of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 , \mathbf{v}_5 will have a zero coefficient on \mathbf{v}_3 , so this vector can never be eliminated from the set used to build the span. Though it was not requested in the problem, notice that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a linearly independent set, so we cannot make the set any smaller and still span W.

6. Suppose that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is a linearly independent set in \mathbb{C}^{35} . Prove that

 $\{\mathbf{v}_1, \, \mathbf{v}_1 + \mathbf{v}_2, \, \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3, \, \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_4\}$

is a linearly independent set. (15 points)

Solution: Our hypothesis and our conclusion use the term linear independence, so it will get a workout. To establish linear independence, we begin with the definition (Definition LICV) and write a relation of linear dependence (Definition RLDCV),

$$\alpha_{1}(\mathbf{v}_{1}) + \alpha_{2}(\mathbf{v}_{1} + \mathbf{v}_{2}) + \alpha_{3}(\mathbf{v}_{1} + \mathbf{v}_{2} + \mathbf{v}_{3}) + \alpha_{4}(\mathbf{v}_{1} + \mathbf{v}_{2} + \mathbf{v}_{3} + \mathbf{v}_{4}) = \mathbf{0}$$

Using the distributive and commutative properties of vector addition and scalar multiplication (Theorem VSPCM) this equation can be rearranged as

$$(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)\mathbf{v}_1 + (\alpha_2 + \alpha_3 + \alpha_4)\mathbf{v}_2 + (\alpha_3 + \alpha_4)\mathbf{v}_3 + (\alpha_4)\mathbf{v}_4 = \mathbf{0}$$

However, this is a relation of linear dependence (Definition RLDCV) on a linearly independent set, $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ (this was our lone hypothesis). By the definition of linear independence (Definition LICV) the scalars must all be zero. This is the homogeneous system of equations,

$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 0$$
$$\alpha_2 + \alpha_3 + \alpha_4 = 0$$
$$\alpha_3 + \alpha_4 = 0$$
$$\alpha_4 = 0$$

Row-reducing the coefficient matrix of this system (or backsolving) gives the conclusion

$$\alpha_1 = 0$$
 $\alpha_2 = 0$ $\alpha_3 = 0$ $\alpha_4 = 0$

This means, by Definition LICV, that the original set

$$\{\mathbf{v}_1, \, \mathbf{v}_1 + \mathbf{v}_2, \, \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3, \, \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_4\}$$

is linearly independent.