Show all of your work and explain your answers fully. There is a total of 90 possible points.

1. Compute the product of the two matrices below, $A B$. Do this using the definitions of the matrix-vector product (Definition MVP) and the definition of matrix multiplication (Definition MM), no credit will be given for an entry-by-entry computation or a calculator answer. (15 points)

$$
A=\left[\begin{array}{cc}
2 & 5 \\
-1 & 3 \\
2 & -2
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & 5 & -3 & 4 \\
2 & 0 & 2 & -3
\end{array}\right]
$$

Solution: By Definition MM,

$$
A B=\left[\left.\left[\begin{array}{cc}
2 & 5 \\
-1 & 3 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left|\left[\begin{array}{cc}
2 & 5 \\
-1 & 3 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
5 \\
0
\end{array}\right]\right|\left[\begin{array}{cc}
2 & 5 \\
-1 & 3 \\
2 & -2
\end{array}\right]\left[\begin{array}{c}
-3 \\
2
\end{array}\right] \right\rvert\,\left[\begin{array}{cc}
2 & 5 \\
-1 & 3 \\
2 & -2
\end{array}\right]\left[\begin{array}{c}
4 \\
-2
\end{array}\right]\right]
$$

Repeated applications of Definition MVP give

$$
\begin{aligned}
& =\left[\left.(1)\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right]+(2)\left[\begin{array}{c}
5 \\
3 \\
-2
\end{array}\right]\left|(5)\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right]+(0)\left[\begin{array}{c}
5 \\
3 \\
-2
\end{array}\right]\right|(-3)\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right]+(2)\left[\begin{array}{c}
5 \\
3 \\
-2
\end{array}\right] \right\rvert\,(4)\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right]+(-3)\left[\begin{array}{c}
5 \\
3 \\
-2
\end{array}\right]\right] \\
& =\left[\begin{array}{cccc}
12 & 10 & 4 & -7 \\
5 & -5 & 9 & -13 \\
-2 & 10 & -10 & 14
\end{array}\right]
\end{aligned}
$$

2. Solve the system of equations below using the inverse of a matrix. No credit will be given for solutions obtained with other methods. (15 points)

$$
\begin{array}{r}
x_{1}+x_{2}+3 x_{3}+x_{4}=5 \\
-2 x_{1}-x_{2}-4 x_{3}-x_{4}=-7 \\
x_{1}+4 x_{2}+10 x_{3}+2 x_{4}=9 \\
-2 x_{1}-4 x_{3}+5 x_{4}=9
\end{array}
$$

Solution: The coefficient matrix and vector of constants for the system are

$$
\left[\begin{array}{cccc}
1 & 1 & 3 & 1 \\
-2 & -1 & -4 & -1 \\
1 & 4 & 10 & 2 \\
-2 & 0 & -4 & 5
\end{array}\right]
$$

$$
\mathbf{b}=\left[\begin{array}{c}
5 \\
-7 \\
9 \\
9
\end{array}\right]
$$

A^{-1} can be computed by using a calculator, or by the method of Theorem CINSM. Then Theorem SNSCM says the unique solution is

$$
A^{-1} \mathbf{b}=\left[\begin{array}{cccc}
38 & 18 & -5 & -2 \\
96 & 47 & -12 & -5 \\
-39 & -19 & 5 & 2 \\
-16 & -8 & 2 & 1
\end{array}\right]\left[\begin{array}{c}
5 \\
-7 \\
9 \\
9
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
1 \\
3
\end{array}\right]
$$

3. Let A be the matrix below, and find the indicated sets by the requested methods. (30 points)

$$
A=\left[\begin{array}{cccc}
2 & -1 & 5 & -3 \\
-5 & 3 & -12 & 7 \\
1 & 1 & 4 & -3
\end{array}\right]
$$

(a) A linearly independent set S so that $\mathrm{R}(A)=\mathrm{Sp}(S)$ and S is composed of columns of A.

Solution: First find a matrix B that is row-equivalent to A and in reduced row-echelon form

$$
B=\left[\begin{array}{cccc}
\boxed{1} & 0 & 3 & -2 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

By Theorem BROC we can choose the columns of A that correspond to dependent variables $(D=\{1,2\})$ as the elements of S and obtain the desired properties. So

$$
S=\left\{\left[\begin{array}{c}
2 \\
-5 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right]\right\}
$$

(b) A linearly independent set S so that $\mathrm{R}(A)=\mathrm{Sp}(S)$ and the vectors in S have a nice pattern of zeros and ones at the top of the vectors.

Solution: We can write the range of A as the row space of the transpose. So we row-reduce the transpose of A to obtain the row-equivalent matrix C in reduced row-echelon form

$$
C=\left[\begin{array}{lll}
1 & 0 & 8 \\
0 & 1 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The nonzero rows (written as columns) will be a linearly independent set that spans the row space of A^{t}, by Theorem BRS, ans the zeros and ones will be at the top of the vectors,

$$
S=\left\{\left[\begin{array}{l}
1 \\
0 \\
8
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]\right\}
$$

(c) A linearly independent set S so that $\mathrm{R}(A)=\mathrm{Sp}(S)$ and the vectors in S have a nice pattern of zeros and ones at the bottom of the vectors.

Solution: In preparation for Theorem RNS, augment A with the 3×3 identity matrix I_{3} and row-reduce to obtain,

$$
\left[\begin{array}{ccccccc}
1 & 0 & 3 & -2 & 0 & -\frac{1}{8} & \frac{3}{8} \\
0 & 1 & 1 & -1 & 0 & \frac{1}{8} & \frac{5}{8} \\
0 & 0 & 0 & 0 & 1 & \frac{3}{8} & -\frac{1}{8}
\end{array}\right]
$$

Then since the first four columns of row 3 are all zeros, we extract

$$
K=\left[\begin{array}{lll}
1 & \frac{3}{8} & -\frac{1}{8}
\end{array}\right]
$$

Theorem RNS says that $\mathrm{R}(A)=\mathrm{N}(K)$. We can then use Theorem SSNS and Theorem BNS to construct the desired set S, based on the free variables with indices in $F=\{2,3\}$ for the homogeneous system $\operatorname{LS}(K, \mathbf{0})$, so

$$
S=\left\{\left[\begin{array}{c}
-\frac{3}{8} \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
\frac{1}{8} \\
0 \\
1
\end{array}\right]\right\}
$$

Notice that the zeros and ones are at the bottom of the vectors.
(d) A linearly independent set S so that $\mathrm{rs}(A)=\mathrm{Sp}(S)$.

Solution: This is a straightforward application of Theorem BRS. Use the row-reduced matrix B from part (a), grab the nonzero rows, and write them as column vectors,

$$
S=\left\{\left[\begin{array}{c}
1 \\
0 \\
3 \\
-2
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
1 \\
-1
\end{array}\right]\right\}
$$

4. Suppose that A is an $m \times n$ matrix and I_{n} is the $n \times n$ identity matrix. Give a careful proof that $A I_{n}=A$. (15 points)

Solution: This is Theorem MMIM and an entry-by-entry proof is given there making use of Theorem EMP. A proof could also be constructed by appealing to Definition MM and then Definition MVP.
5. Suppose that A is an $m \times n$ matrix and B is an $n \times p$ matrix. Prove that the null space of B is a subset of the null space of $A B$, that is $\mathrm{N}(B) \subseteq \mathrm{N}(A B)$. Provide an example where the opposite is false, in other words give an example where $\mathrm{N}(A B) \nsubseteq \mathrm{N}(B)$. (15 points)

Solution: To prove that one set is a subset of another, we start with an element of the smaller set and see if we can determine that it is a member of the larger set (Technique SE). Suppose $\mathbf{x} \in \mathrm{N}(B)$. Then we know that $B \mathbf{x}=\mathbf{0}$ by Definition NSM. Consider

$$
\begin{aligned}
(A B) \mathbf{x} & =A(B \mathbf{x}) & & \text { Theorem MMA } \\
& =A \mathbf{0} & & \text { Hypothesis } \\
& =\mathbf{0} & & \text { Theorem MMZM }
\end{aligned}
$$

To show that the inclusion does not hold in the opposite direction, choose B to be any nonsingular matrix of size n. Then $\mathrm{N}(B)=\{\mathbf{0}\}$ by Theorem NSTNS. Let A be the square zero matrix, \mathcal{O}, of the same size. Then $A B=\mathcal{O} B=\mathcal{O}$ by Theorem MMZM and therefore $\mathrm{N}(A B)=\mathbb{C}^{n}$, and is not a subset of $\mathrm{N}(B)=\{\mathbf{0}\}$.

