Show all of your work and explain your answers fully. There is a total of 140 possible points.
For Problems 1-5 consider the linear transformation,

$$
T: \mathbb{C}^{3} \mapsto \mathbb{C}^{2}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}-x_{2}+5 x_{3} \\
-4 x_{1}+2 x_{2}-10 x_{3}
\end{array}\right]
$$

1. Verify that $T$ is a linear transformation. (15 points)

Solution: We can rewrite $T$ as follows:

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}-x_{2}+5 x_{3} \\
-4 x_{1}+2 x_{2}-10 x_{3}
\end{array}\right]=x_{1}\left[\begin{array}{c}
2 \\
-4
\end{array}\right]+x_{2}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+x_{3}\left[\begin{array}{c}
5 \\
-10
\end{array}\right]=\left[\begin{array}{ccc}
2 & -1 & 5 \\
-4 & 2 & -10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

and Theorem MBLT tell us that any function of this form is a linear transformation.
2. Find a basis for the null space of $T, \mathrm{~N}(T)$, and a basis for the range of $T, \mathrm{R}(T)$. (15 points)

Solution: For the null space, we require all $\mathbf{x} \in \mathbb{C}^{3}$ such that $T(\mathbf{x})=\mathbf{0}$. This condition is

$$
\left[\begin{array}{c}
2 x_{1}-x_{2}+5 x_{3} \\
-4 x_{1}+2 x_{2}-10 x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

This leads to a homogeneous system of two linear equations in three variables, whose coefficient matrix row-reduces to

$$
\left[\begin{array}{ccc}
1 & -\frac{1}{2} & \frac{5}{2} \\
0 & 0 & 0
\end{array}\right]
$$

With two free variables, Theorem SSNS and Theorem BNS yields the basis for the null space

$$
\left\{\left[\begin{array}{c}
-\frac{5}{2} \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right]\right\}
$$

To find the range of $T$, apply $T$ to the elements of a spanning set for $\mathbb{C}^{3}$ as suggested in Theorem SLTS. We will use the standard basis vectors (Theorem SUVB).

$$
\mathrm{R}(T)=\operatorname{Sp}\left(\left\{T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right), T\left(\mathbf{e}_{3}\right)\right\}\right)=\operatorname{Sp}\left(\left\{\left[\begin{array}{c}
2 \\
-4
\end{array}\right],\left[\begin{array}{c}
-1 \\
2
\end{array}\right],\left[\begin{array}{c}
5 \\
-10
\end{array}\right]\right\}\right)
$$

Each of these vectors is a scalar multiple of the others, so we can toss two of them in reducing the spanning set to a linearly independent set (or be more careful and apply Theorem RBOC on a matrix with these three vectors as columns). The result is the basis of the range,

$$
\left\{\left[\begin{array}{c}
1 \\
-2
\end{array}\right]\right\}
$$

3. What is the nullity of $T, n(T)$, and the rank of $T, r(T)$ ? (10 points)

Solution: The basis for the null space has size 2 , so $n(T)=2$.
The basis for the range has size 1 , so $r(T)=1$.
Check: Confirm Theorem RPNDD,

$$
r(T)+n(T)=2+1=3=\operatorname{dim}\left(\mathbb{C}^{3}\right)
$$

4. Is $T$ injective? Surjective? (10 points)

Solution: With $n(T) \neq 0, \mathrm{~N}(T) \neq\{\mathbf{0}\}$, so Theorem NSILT says $T$ is not injective.
With $r(T) \neq 2, \mathrm{R}(T) \neq \mathbb{C}^{2}$, so Theorem RSLT says $T$ is not surjective.
5. Compute the preimages, $T^{-1}\left(\left[\begin{array}{l}2 \\ 3\end{array}\right]\right)$ and $T^{-1}\left(\left[\begin{array}{c}4 \\ -8\end{array}\right]\right) \cdot(15$ points $)$

Solution: For the first pre-image, we want $\mathbf{x} \in \mathbb{C}^{3}$ such that $T(\mathbf{x})=\left[\begin{array}{l}2 \\ 3\end{array}\right]$. This becomes,

$$
\left[\begin{array}{c}
2 x_{1}-x_{2}+5 x_{3} \\
-4 x_{1}+2 x_{2}-10 x_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Vector equality gives a system of two linear equations in three variables, represented by the augmented matrix

$$
\left[\begin{array}{cccc}
2 & -1 & 5 & 2 \\
-4 & 2 & -10 & 3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
{\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
0 & \frac{5}{2}
\end{array}\right.} & 0 \\
0 & 0 & 0 & 1 \\
\hline
\end{array}\right]
$$

so the system is inconsistent and the pre-image is the empty set. For the second pre-image the same procedure leads to an augmented matrix with a different vector of constants

$$
\left[\begin{array}{cccc}
2 & -1 & 5 & 4 \\
-4 & 2 & -10 & -8
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & -\frac{1}{2} & \frac{5}{2} & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We begin with just one solution to this system, $\mathbf{x}=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$, obtained by setting the two free variables ( $x_{2}$ and $\left.x_{3}\right)$ both to zero. Then we apply Theorem NSPI to the non-empty pre-image to get

$$
T^{-1}\left(\left[\begin{array}{c}
4 \\
-8
\end{array}\right]\right)=\mathrm{x}+\mathrm{N}(T)=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]+\mathrm{Sp}\left(\left\{\left[\begin{array}{c}
-\frac{5}{2} \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right]\right\}\right)
$$

6. Consider the linear transformation $S: M_{12} \mapsto P_{1}$ from the set of $1 \times 2$ matrices to the set of polynomials of degree at most 1 , defined by

$$
S\left(\left[\begin{array}{ll}
a & b
\end{array}\right]\right)=(3 a+b)+(5 a+2 b) x
$$

(a) Prove that $S$ is invertible, without using any of your work from part (b). (15 points)

Solution: Determine the null space of $S$ first. The condition that $S\left(\left[\begin{array}{ll}a & b\end{array}\right]\right)=\mathbf{0}$ becomes $(3 a+b)+(5 a+$ $2 b) x=0+0 x$. Equating coefficients of these polynomials yields the system

$$
\begin{array}{r}
3 a+b=0 \\
5 a+2 b=0
\end{array}
$$

This homogeneous system has a nonsingular coefficient matrix, so the only solution is $a=0, b=0$ and thus

$$
\mathrm{N}(S)=\left\{\left[\begin{array}{ll}
0 & 0
\end{array}\right]\right\}
$$

By Theorem NSILT, we know $S$ is injective. With $n(S)=0$ we employ Theorem RPNDD to find.

$$
r(S)=r(S)+0=r(S)+n(S)=\operatorname{dim}\left(M_{12}\right)=2=\operatorname{dim}\left(P_{1}\right)
$$

Since $\mathrm{R}(S) \subseteq P_{1}$ and $\operatorname{dim}(\mathrm{R}(S))=\operatorname{dim}\left(P_{1}\right)$, we can infer the set equality $\mathrm{R}(S)=P_{1}$ and $S$ is surjective.
Since $S$ is injective and surjective, $S$ is invertible by Theorem ILTIS.
(b) Perform one-half of the verification that the linear transformation $R$ is the inverse of $S$. (10 points)

$$
R: P_{1} \mapsto M_{12}, \quad R(r+s x)=[(2 r-s) \quad(-5 r+3 s)]
$$

Solution: One of the two defining conditions of an invertible linear transformation is (Definition IVLT)

$$
\begin{aligned}
(S \circ R)(a+b x) & =S(R(a+b x)) \\
& =S([(2 a-b) \quad(-5 a+3 b)]) \\
& =(3(2 a-b)+(-5 a+3 b))+(5(2 a-b)+2(-5 a+3 b)) x \\
& =((6 a-3 b)+(-5 a+3 b))+((10 a-5 b)+(-10 a+6 b)) x \\
& =a+b x \\
& =I_{P_{1}}(a+b x)
\end{aligned}
$$

That $(R \circ S)\left(\left[\begin{array}{ll}a & b\end{array}\right]\right)=I_{M_{12}}\left(\left[\begin{array}{ll}a & b\end{array}\right]\right)$ is similar.
7. Suppose that $T: U \mapsto V$ is a surjective linear transformation and $\operatorname{dim}(U)=\operatorname{dim}(V)$. Prove that $T$ is injective. (20 points)

Solution: If $T$ is surjective, then Theorem RSLT says $\mathrm{R}(T)=V$, so $r(T)=\operatorname{dim}(V)$. In turn, the hypothesis gives $r(T)=\operatorname{dim}(U)$. Then, using Theorem RPNDD,

$$
n(T)=(r(T)+n(T))-r(T)=\operatorname{dim}(U)-\operatorname{dim}(U)=0
$$

With a null space of zero dimension, $\mathrm{N}(T)=\{\mathbf{0}\}$, and by Theorem NSILT we see that $T$ is injective. $T$ is both injective and surjective so by Theorem ILTIS, $T$ is invertible.
8. Suppose that that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations. Prove the following relationship between null spaces. ( 20 points)

$$
\mathrm{N}(T) \subseteq \mathrm{N}(S \circ T)
$$

Solution: We are asked to prove that $\mathrm{N}(T)$ is a subset of $\mathrm{N}(S \circ T)$. From comments in Technique SE, choose $\mathbf{x} \in \mathrm{N}(T)$. Then we know that $T(\mathbf{x})=\mathbf{0}$. So

$$
\begin{aligned}
(S \circ T)(\mathbf{x}) & =S(T(\mathbf{x})) & & \text { Definition LTC } \\
& =S(\mathbf{0}) & & \mathbf{x} \in \mathrm{N}(T) \\
& =\mathbf{0} & & \text { Theorem LTTZZ }
\end{aligned}
$$

This qualifies $\mathbf{x}$ for membership in $\mathrm{N}(S \circ T)$.

