Show all of your work and explain your answers fully. There is a total of 95 possible points. If you use a calculator on a problem be sure to write down both the input to, and output from, the calculator.

1. Determine if the set S below is linearly independent or linearly dependent. (15 points)

$$
S=\left\{\left[\begin{array}{c}
2 \\
1 \\
3 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{c}
4 \\
-2 \\
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{c}
10 \\
-7 \\
0 \\
10 \\
4
\end{array}\right]\right\}
$$

Solution: Theorem LIVRN suggests we analyze a matrix whose columns are the vectors from the set,

$$
A=\left[\begin{array}{ccc}
2 & 4 & 10 \\
1 & -2 & -7 \\
3 & 1 & 0 \\
-1 & 3 & 10 \\
2 & 2 & 4
\end{array}\right]
$$

Row-reducing the matrix A yields,

$$
\left[\begin{array}{ccc}
{[1} & 0 & -1 \\
0 & \boxed{1} & 3 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We see that $r=2 \neq 3=n$, where r is the number of nonzero rows and n is the number of columns. By Theorem LIVRN, the set S is linearly dependent.
2. Let S be the set of vectors below from \mathbb{C}^{3}. (20 points)

$$
S=\left\{\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
5 \\
4
\end{array}\right],\left[\begin{array}{c}
-6 \\
5 \\
1
\end{array}\right]\right\}
$$

(a) Determine if the vector $\mathbf{y}=\left[\begin{array}{c}-5 \\ 3 \\ 0\end{array}\right]$ is an element of $\mathcal{S} p(S)$.

Solution: Form a linear combination, with unknown scalars, of S that equals \mathbf{y},

$$
a_{1}\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]+a_{2}\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]+a_{3}\left[\begin{array}{l}
1 \\
5 \\
4
\end{array}\right]+a_{4}\left[\begin{array}{c}
-6 \\
5 \\
1
\end{array}\right]=\left[\begin{array}{c}
-5 \\
3 \\
0
\end{array}\right]
$$

We want to know if there are values for the scalars that make the vector equation true since that is the definition of membership in $\mathcal{S} p(S)$. By Theorem SLSLC any such values will also be solutions to the linear system represented by the augmented matrix,

$$
\left[\begin{array}{ccccc}
-1 & 3 & 1 & -6 & -5 \\
2 & 1 & 5 & 5 & 3 \\
1 & 2 & 4 & 1 & 0
\end{array}\right]
$$

Row-reducing the matrix yields,

$$
\left[\begin{array}{ccccc}
\hline 1 & 0 & 2 & 3 & 2 \\
0 & \boxed{1} & 1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

From this we see that the system of equations is consistent (Theorem RCLS), and has a infinitely many solutions. Any solution will provide a linear combination of the vectors in R that equals \mathbf{y}. So $\mathbf{y} \in R$, for example,

$$
(-10)\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]+(-2)\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]+(3)\left[\begin{array}{l}
1 \\
5 \\
4
\end{array}\right]+(2)\left[\begin{array}{c}
-6 \\
5 \\
1
\end{array}\right]=\left[\begin{array}{c}
-5 \\
3 \\
0
\end{array}\right]
$$

(b) Determine if the vector $\mathbf{w}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$ is an element of $\mathcal{S} p(S)$.

Solution: Form a linear combination, with unknown scalars, of S that equals w,

$$
a_{1}\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]+a_{2}\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]+a_{3}\left[\begin{array}{l}
1 \\
5 \\
4
\end{array}\right]+a_{4}\left[\begin{array}{c}
-6 \\
5 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]
$$

We want to know if there are values for the scalars that make the vector equation true since that is the definition of membership in $\mathcal{S} p(S)$. By Theorem SLSLC any such values will also be solutions to the linear system represented by the augmented matrix,

$$
\left[\begin{array}{ccccc}
-1 & 3 & 1 & -6 & 2 \\
2 & 1 & 5 & 5 & 1 \\
1 & 2 & 4 & 1 & 3
\end{array}\right]
$$

Row-reducing the matrix yields,

$$
\left[\begin{array}{ccccc}
\boxed{1} & 0 & 2 & 3 & 0 \\
0 & \boxed{1} & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

With a leading 1 in the last column, the system is inconsistent (Theorem RCLS), so there are no scalars $a_{1}, a_{2}, a_{3}, a_{4}$ that will create a linear combination of the vectors in S that equal \mathbf{w}. So $\mathbf{w} \notin \mathcal{S} p(S)$.
3. For the matrix A below, find a linearly independent set S so that the null space of T is spanned by S, that is, $\mathcal{N}(A)=\mathcal{S} p(S)$. (15 points)

$$
A=\left[\begin{array}{ccccc}
-1 & -2 & 2 & 1 & 5 \\
1 & 2 & 1 & 1 & 5 \\
3 & 6 & 1 & 2 & 7 \\
2 & 4 & 0 & 1 & 2
\end{array}\right]
$$

Solution: Theorem BNS provides formulas for $n-r$ vectors that will meet the requirements of this question. These vectors are the same ones listed in Theorem VFSLS when we solve the homogeneous system $\mathcal{L S}(A, \mathbf{0})$, whose solution set is the null space (Definition NSM).
To apply Theorem BNS or Theorem VFSLS we first row-reduce the matrix, resulting in

$$
B=\left[\begin{array}{ccccc}
\boxed{1} & 2 & 0 & 0 & 3 \\
0 & 0 & \boxed{1} & 0 & 6 \\
0 & 0 & 0 & \boxed{1} & -4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So we see that $n-r=5-3=2$ and $F=\{2,5\}$, so the vector form of a generic solution vector is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-3 \\
0 \\
-6 \\
4 \\
1
\end{array}\right]
$$

So we have

$$
\mathcal{N}(A)=\mathcal{S} p\left(\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
-6 \\
4 \\
1
\end{array}\right]\right\}\right)
$$

4. Given the set S below, find a linearly independent set T so that $\mathcal{S} p(T)=\mathcal{S} p(S)$. (15 points)

$$
S=\left\{\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
5 \\
-1 \\
3
\end{array}\right]\right\}
$$

Solution: Theorem RSS says we can make a matrix with these four vectors as columns, row-reduce, and just keep the columns with indices in the set D. Here we go, forming the relevant matrix and row-reducing,

$$
\left[\begin{array}{cccc}
2 & 3 & 1 & 5 \\
-1 & 0 & 1 & -1 \\
2 & 1 & -1 & 3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
\hline 1 & 0 & -1 & 1 \\
0 & \left.\begin{array}{|ccc}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
\end{array}\right]
$$

Analyzing the row-reduced version of this matrix, we see that the firast two columns are pivot columns, so $D=\{1,2\}$. Theorem RSS says we need only "keep" the first two columns to create a set with the requisite properties,

$$
T=\left\{\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]\right\}
$$

5. Suppose that \mathbf{x} is a solution to $\mathcal{L S}(A, \mathbf{b})$ and that \mathbf{z} is a solution to the homeneous system $\mathcal{L S}(A, \mathbf{0})$. Prove that $\mathbf{x}+\mathbf{z}$ is a solution to $\mathcal{L S}(A, \mathbf{b})$. (15 points)

Solution: Suppose that A has n columns, so $\mathbf{x}, \mathbf{z} \in \mathbb{C}^{n}$. Give the components of \mathbf{x} and \mathbf{z} names and apply Definition CVA,

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right] \quad \mathbf{z}=\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3} \\
\vdots \\
z_{n}
\end{array}\right] \quad \mathbf{x}+\mathbf{z}=\left[\begin{array}{c}
x_{1}+z_{1} \\
x_{2}+z_{2} \\
x_{3}+z_{3} \\
\vdots \\
x_{n}+z_{n}
\end{array}\right]
$$

We wish to prove that the latter vector is a solution to $\mathcal{L S}(A, \mathbf{b})$ on the assumption that \mathbf{x} and \mathbf{z} are solutions to the given systems. Suppose that a single equation from this system (the i-th one) has the form,

$$
a_{i 1} x_{1}+a_{i 2} x_{2}+a_{i 3} x_{3}+\cdots+a_{i n} x_{n}=b_{i}
$$

Evaluate the left-hand side of this equation with the components of the proposed solution vector $\mathbf{x}+\mathbf{z}$,

$$
\begin{array}{rlrl}
a_{i 1} & \left(x_{1}+z_{1}\right)+a_{i 2}\left(x_{2}+z_{2}\right)+a_{i 3}\left(x_{3}+z_{3}\right)+\cdots+a_{i n}\left(x_{n}+z_{n}\right) & \\
& =a_{i 1} x_{1}+a_{i 1} z_{1}+a_{i 2} x_{2}+a_{i 2} z_{2}+a_{i 3} x_{3}+a_{i 3} z_{3}+\cdots+a_{i n} x_{n}+a_{i n} z_{n} & & \text { Distributivity } \\
& =a_{i 1} x_{1}+a_{i 2} x_{2}+a_{i 3} x_{3}+\cdots+a_{i n} x_{n}+a_{i 1} z_{1}+a_{i 2} z_{2}+a_{i 3} z_{3}+\cdots+a_{i n} z_{n} & \text { Commutativity } \\
& =a_{i 1} x_{1}+a_{i 2} x_{2}+a_{i 3} x_{3}+\cdots+a_{i n} x_{n}+0 & & \text { z solution to } \mathcal{L S}(A, \mathbf{0}) \\
& =b_{i}+0 & & \text { x solution to } \mathcal{L S}(A, \mathbf{b}) \\
& =b_{i} & &
\end{array}
$$

So equation i is true for all i, and we see that $\mathbf{x}+\mathbf{z}$ is a solution to $\mathcal{L S}(A, \mathbf{b})$.
6. Suppose that \mathbf{v}_{1} and \mathbf{v}_{2} are any two vectors from \mathbb{C}^{m}. Prove the following set equality. (15 points)

$$
\mathcal{S} p\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right)=\mathcal{S} p\left(\left\{\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}-\mathbf{v}_{2}\right\}\right)
$$

Solution: This is an equality of sets, so Technique SE applies.
The "easy" half first. Show that $X=\mathcal{S} p\left(\left\{\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}-\mathbf{v}_{2}\right\}\right) \subseteq \mathcal{S} p\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right)=Y$.
Choose $\mathbf{x} \in X$. Then $\mathbf{x}=a_{1}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)+a_{2}\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)$ for some scalars a_{1} and a_{2}. Then,

$$
\begin{aligned}
\mathbf{x} & =a_{1}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)+a_{2}\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right) \\
& =a_{1} \mathbf{v}_{1}+a_{1} \mathbf{v}_{2}+a_{2} \mathbf{v}_{1}+\left(-a_{2}\right) \mathbf{v}_{2} \\
& =\left(a_{1}+a_{2}\right) \mathbf{v}_{1}+\left(a_{1}-a_{2}\right) \mathbf{v}_{2}
\end{aligned}
$$

which qualifies \mathbf{x} for membership in Y, as it is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$.
Now show the opposite inclusion, $Y=\mathcal{S} p\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right) \subseteq \mathcal{S} p\left(\left\{\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}-\mathbf{v}_{2}\right\}\right)=X$.
Choose $\mathbf{y} \in Y$. Then there are scalars b_{1}, b_{2} such that $\mathbf{y}=b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}$. Rearranging, we obtain,

$$
\begin{aligned}
\mathbf{y} & =b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2} \\
& =\frac{b_{1}}{2}\left[\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)+\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)\right]+\frac{b_{2}}{2}\left[\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)-\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)\right] \\
& =\frac{b_{1}+b_{2}}{2}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)+\frac{b_{1}-b_{2}}{2}\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)
\end{aligned}
$$

This is an expression for \mathbf{y} as a linear combination of $\mathbf{v}_{1}+\mathbf{v}_{2}$ and $\mathbf{v}_{1}-\mathbf{v}_{2}$, earning \mathbf{y} membership in X. Since X is a subset of Y, and vice versa, we see that $X=Y$, as desired.

