Show all of your work and explain your answers fully. There is a total of 100 possible points. If you use a calculator on a problem be sure to write down both the input to, and output from, the calculator.

1. Use the inverse of a matrix to find all the solutions to the following system of equations. No credit will be given for solutions found by another method. (15 points)

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =-3 \\
2 x_{1}+5 x_{2}-x_{3} & =-4 \\
-x_{1}-4 x_{2} & =2
\end{aligned}
$$

Solution: The coefficient matrix of this system of equations is

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & 5 & -1 \\
-1 & -4 & 0
\end{array}\right]
$$

and the vector of constants is $\mathbf{b}=\left[\begin{array}{c}-3 \\ -4 \\ 2\end{array}\right]$. So by Theorem SLEMM we can convert the system to the form $A \mathbf{x}=\mathbf{b}$. Row-reducing this matrix yields the identity matrix so by Theorem NSRRI we know A is nonsingular. This allows us to apply Theorem SNSCM to find the unique solution as

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{ccc}
-4 & 4 & 3 \\
1 & -1 & -1 \\
-3 & 2 & 1
\end{array}\right]\left[\begin{array}{c}
-3 \\
-4 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right]
$$

Remember, you can check this solution easily by evaluating the matrix-vector product $A \mathbf{x}$ (Definition MVP).
2. For the matrix A below find a set of vectors T meeting the following requirements: (1) the span of T is the column space of A, that is, $\mathcal{S} p(T)=\mathcal{C}(A)$, (2) T is linearly independent, and (3) the elements of T are columns of A. (15 points)

$$
A=\left[\begin{array}{ccccc}
2 & 1 & 4 & -1 & 2 \\
1 & -1 & 5 & 1 & 1 \\
-1 & 2 & -7 & 0 & 1 \\
2 & -1 & 8 & -1 & 2
\end{array}\right]
$$

Solution: Theorem BROC is the right tool for this problem. Row-reduce this matrix, identify the pivot columns and then grab the corresponding columns of A for the set T. The matrix A row-reduces to

$$
\left[\begin{array}{ccccc}
\begin{array}{ccc}
1 & 0 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array} & 0 & 0 \\
0
\end{array}\right]
$$

So $D=\{1,2,4,5\}$ and then

$$
T=\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \mathbf{A}_{4}\right\}=\left\{\left[\begin{array}{c}
2 \\
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
1 \\
2
\end{array}\right]\right\}
$$

has the requested properties.
3. Given the matrix A below, use the extended echelon form of A to answer each part of this problem. No credit will be given for other approaches that do not use the extended echelon form. In each part, find a linearly independent set of vectors, S, so that the span of $S, \mathcal{S} p(S)$, equals the specified set of vectors. (40 points)

$$
A=\left[\begin{array}{ccc}
-5 & 3 & -1 \\
-1 & 1 & 1 \\
-8 & 5 & -1 \\
3 & -2 & 0
\end{array}\right]
$$

Solution: Add a 4×4 identity matrix to the right of A to form the matrix M and then row-reduce to the matrix N,

$$
M=\left[\begin{array}{ccccccc}
-5 & 3 & -1 & 1 & 0 & 0 & 0 \\
-1 & 1 & 1 & 0 & 1 & 0 & 0 \\
-8 & 5 & -1 & 0 & 0 & 1 & 0 \\
3 & -2 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccccc}
\hline 1 & 0 & 2 & 0 & 0 & -2 & -5 \\
0 & \boxed{1} & 3 & 0 & 0 & -3 & -8 \\
0 & 0 & 0 & \boxed{1} & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 1 & 1 & 3
\end{array}\right]=N
$$

To apply Theorem FS in each of these four parts, we need the two matrices,

$$
C=\left[\begin{array}{ccc}
\boxed{1} & 0 & 2 \\
0 & 1 & 3
\end{array}\right] \quad L=\left[\begin{array}{cccc}
\boxed{1} & 0 & -1 & -1 \\
0 & \boxed{1} & 1 & 3
\end{array}\right]
$$

(a) The row space of $A, \mathcal{R}(A)$.

Solution:

$$
\begin{aligned}
\mathcal{R}(A) & =\mathcal{R}(C) \\
& =\mathcal{S} p\left(\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]\right)
\end{aligned}
$$

Theorem FS

Theorem BRS
(b) The column space of $A, \mathcal{C}(A)$

Solution:

$$
\begin{aligned}
\mathcal{C}(A) & =\mathcal{N}(L) \\
& =\mathcal{S} p\left(\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-3 \\
0 \\
1
\end{array}\right]\right)
\end{aligned}
$$

Theorem FS

Theorem BNS
(c) The null space of $A, \mathcal{N}(A)$.

Solution:

$$
\begin{aligned}
\mathcal{N}(A) & =\mathcal{N}(C) & & \text { Theorem FS } \\
& =\mathcal{S} p\left(\left[\begin{array}{c}
-2 \\
-3 \\
1
\end{array}\right]\right) & & \text { Theorem BNS }
\end{aligned}
$$

(d) The left null space of $A, \mathcal{L}(A)$.

Solution:

$$
\begin{aligned}
\mathcal{L}(A) & =\mathcal{R}(L) & & \text { Theorem FS } \\
& =\mathcal{S} p\left(\left[\begin{array}{c}
1 \\
0 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
3
\end{array}\right]\right) & & \text { Theorem BRS }
\end{aligned}
$$

4. Suppose that A is an $m \times n$ matrix and let I_{n} denote the $n \times n$ identity matrix. Prove that $A I_{n}=A$. (15 points)

Solution: This is the first part of Theorem MMIM. See the proof given there.
5. Suppose that A is an $m \times n$ matrix and B is a $n \times p$ matrix. Prove that the null space of B is a subset of the null space of $A B$, that is $\mathcal{N}(B) \subseteq \mathcal{N}(A B)$. (15 points)

Solution: This is Exercise MM.T40. See the proof given there.

