Show *all* of your work and *explain* your answers fully. There is a total of 90 possible points. If you use a calculator on a problem be sure to write down both the input to, and output from, the calculator.

1. In the vector space of polynomials P_3 , determine if the set S is linearly independent or linearly dependent. (15 points)

$$S = \left\{2 + x - 3x^2 - 8x^3, 1 + x + x^2 + 5x^3, 3 - 4x^2 - 7x^3\right\}$$

Solution: Begin with a relation of linear dependence (Definition RLD),

$$a_1 \left(2 + x - 3x^2 - 8x^3\right) + a_2 \left(1 + x + x^2 + 5x^3\right) + a_3 \left(3 - 4x^2 - 7x^3\right) = \mathbf{0}$$

Massage according to the definitions of scalar multiplication and vector addition in the definition of P_3 (Example VS.VSP) and use the zero vector dro this vector space,

$$(2a_1 + a_2 + 3a_3) + (a_1 + a_2)x + (-3a_1 + a_2 - 4a_3)x^2 + (-8a_1 + 5a_2 - 7a_3)x^3 = 0 + 0x + 0x^2 + 0x^3$$

The definition of the equality of polynomials allows us to deduce the following four equations,

$$2a_1 + a_2 + 3a_3 = 0$$

$$a_1 + a_2 = 0$$

$$-3a_1 + a_2 - 4a_3 = 0$$

$$-8a_1 + 5a_2 - 7a_3 = 0$$

Row-reducing the coefficient matrix of this homogeneous system leads to the unique solution $a_1 = a_2 = a_3 = 0$. So the only relation of linear dependence on S is the trivial one, and this is linear independence for S (Definition LI).

2. The set W is a subspace of M_{22} , the vector space of all 2×2 matrices. Prove that S is a spanning set for W. (15 points)

$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| 2a - 3b + 4c - d = 0 \right\} \qquad S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -4 \end{bmatrix} \right\}$$

Solution: We want to show that W = Sp(S) (Definition TSVS), which is an equality of sets (Technique SE).

First, show that $Sp(S) \subseteq W$. Begin by checking that each of the three matrices in S is a member of the set W. Then, since W is a vector space, the closure properties (Property AC, Property SC) guarantee that every linear combination of elements of S remains in W.

Second, show that $W \subseteq Sp(S)$. We want to convince ourselves that an arbitrary element of W is a linear combination of elements of S. Choose

$$\mathbf{x} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in W$$

The values of a, b, c, d are not totally arbitrary, since membership in W requires that 2a - 3b + 4c - d = 0. Now, rewrite as follows,

$$\mathbf{x} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$= \begin{bmatrix} a & b \\ c & 2a - 3b + 4c \end{bmatrix}$$

$$= \begin{bmatrix} a & 0 \\ 0 & 2a \end{bmatrix} + \begin{bmatrix} 0 & b \\ 0 & -3b \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ c & 4c \end{bmatrix}$$

$$= a \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & -3 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 4 \end{bmatrix}$$
Definition MSM
$$\in Sp(S)$$
Definition SS

3. For the matrix A below, compute the dimension of the null space of A, dim $(\mathcal{N}(A))$. (15 points)

$$A = \begin{bmatrix} 2 & -1 & -3 & 11 & 9 \\ 1 & 2 & 1 & -7 & -3 \\ 3 & 1 & -3 & 6 & 8 \\ 2 & 1 & 2 & -5 & -3 \end{bmatrix}$$

Solution: Row reduce A,

$$A \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & -3 & -1 \\ 0 & 0 & 1 & -2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

So r = 3 for this matrix. Then

$$\dim (\mathcal{N}(A)) = n (A) \qquad \text{Definition NOM}$$
$$= (n (A) + r (A)) - r (A) \qquad \text{Theorem RPNC}$$
$$= 5 - 3 \qquad \text{Theorem CRN}$$
$$= 2$$

We could also use Theorem BNS and create a basis for $\mathcal{N}(A)$ with n - r = 5 - 3 = 2 vectors (because the solutions are described with 2 free variables) and arrive at the dimension as the size of this basis.

4. The set W below is a subspace of \mathbb{C}^4 . Find the dimension of W. (15 points)

$$W = \mathcal{S}p\left(\left\{ \begin{bmatrix} 2\\-3\\4\\1 \end{bmatrix}, \begin{bmatrix} 3\\0\\1\\-2 \end{bmatrix}, \begin{bmatrix} -4\\-3\\2\\5 \end{bmatrix}\right\}\right)$$

Solution: We will appeal to Theorem RSS (or you could consider this an appeal to Theorem BCSOC). Put the three columnn vectors of this spanning set into a matrix as columns and row-reduce.

$$\begin{bmatrix} 2 & 3 & -4 \\ -3 & 0 & -3 \\ 4 & 1 & 2 \\ 1 & -2 & 5 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The pivot columns are $D = \{1, 2\}$ so we can "keep" the vectors corresponding to the pivot columns and set

$$T = \left\{ \begin{bmatrix} 2\\-3\\4\\1 \end{bmatrix}, \begin{bmatrix} 3\\0\\1\\-2 \end{bmatrix} \right\}$$

and conclude that W = Sp(T) and T is linearly independent. In other words, T is a basis with two vectors, so W has dimension 2.

5. The set $Z = \left\{ \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} \middle| 4z_1 - 3z_2 + z_3 = 0 \right\}$ is a subset of \mathbb{C}^3 . Use the three-part test of Theorem TSS to

prove that Z is a subspace of \mathbb{C}^3 . No credit will be given for using other methods. (15 points)

Solution: See the solution for Exercise S.M20 which is almost identical. This question asks for the "less direct" solution.

6. Suppose that V is a vector space and $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_m}$ is a subset of V. Prove that Sp(S) is a subspace of V. (15 points)

Solution: This is Theorem SSS. See the proof given there.