Show all of your work and explain your answers fully. There is a total of 90 possible points. If you use a calculator on a problem be sure to write down both the input to, and output from, the calculator.

1. In the vector space of polynomials P_{3}, determine if the set S is linearly independent or linearly dependent. (15 points)

$$
S=\left\{2+x-3 x^{2}-8 x^{3}, 1+x+x^{2}+5 x^{3}, 3-4 x^{2}-7 x^{3}\right\}
$$

Solution: Begin with a relation of linear dependence (Definition RLD),

$$
a_{1}\left(2+x-3 x^{2}-8 x^{3}\right)+a_{2}\left(1+x+x^{2}+5 x^{3}\right)+a_{3}\left(3-4 x^{2}-7 x^{3}\right)=\mathbf{0}
$$

Massage according to the definitions of scalar multiplication and vector addition in the definition of P_{3} (Example VS.VSP) and use the zero vector dro this vector space,

$$
\left(2 a_{1}+a_{2}+3 a_{3}\right)+\left(a_{1}+a_{2}\right) x+\left(-3 a_{1}+a_{2}-4 a_{3}\right) x^{2}+\left(-8 a_{1}+5 a_{2}-7 a_{3}\right) x^{3}=0+0 x+0 x^{2}+0 x^{3}
$$

The definition of the equality of polynomials allows us to deduce the following four equations,

$$
\begin{array}{r}
2 a_{1}+a_{2}+3 a_{3}=0 \\
a_{1}+a_{2}=0 \\
-3 a_{1}+a_{2}-4 a_{3}=0 \\
-8 a_{1}+5 a_{2}-7 a_{3}=0
\end{array}
$$

Row-reducing the coefficient matrix of this homogeneous system leads to the unique solution $a_{1}=a_{2}=a_{3}=$ 0 . So the only relation of linear dependence on S is the trivial one, and this is linear independence for S (Definition LI).
2. The set W is a subspace of M_{22}, the vector space of all 2×2 matrices. Prove that S is a spanning set for W. (15 points)

$$
W=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, 2 a-3 b+4 c-d=0\right\} \quad S=\left\{\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
0 & 3
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
1 & -4
\end{array}\right]\right\}
$$

Solution: We want to show that $W=\mathcal{S} p(S)$ (Definition TSVS), which is an equality of sets (Technique SE).
First, show that $\mathcal{S} p(S) \subseteq W$. Begin by checking that each of the three matrices in S is a member of the set W. Then, since W is a vector space, the closure properties (Property AC, Property SC) guarantee that every linear combination of elements of S remains in W.
Second, show that $W \subseteq \mathcal{S} p(S)$. We want to convince ourselves that an arbitrary element of W is a linear combination of elements of S. Choose

$$
\mathbf{x}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in W
$$

The values of a, b, c, d are not totally arbitary, since membership in W requires that $2 a-3 b+4 c-d=0$. Now, rewrite as follows,

$$
\begin{array}{rlr}
\mathbf{x} & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] & \\
& =\left[\begin{array}{cc}
a & b \\
c & 2 a-3 b+4 c
\end{array}\right] & \\
& =\left[\begin{array}{cc}
a & 0 \\
0 & 2 a
\end{array}\right]+\left[\begin{array}{cc}
0 & b \\
0 & -3 b
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
c & 4 c
\end{array}\right] & \\
& =a\left[\begin{array}{cc}
1 & 0 \\
0 & 2
\end{array}\right]+b\left[\begin{array}{cc}
0 & 1 \\
0 & -3
\end{array}\right]+c\left[\begin{array}{cc}
0 & 0 \\
1 & 4
\end{array}\right] &
\end{array}
$$

3. For the matrix A below, compute the dimension of the null space of $A, \operatorname{dim}(\mathcal{N}(A))$. (15 points)

$$
A=\left[\begin{array}{ccccc}
2 & -1 & -3 & 11 & 9 \\
1 & 2 & 1 & -7 & -3 \\
3 & 1 & -3 & 6 & 8 \\
2 & 1 & 2 & -5 & -3
\end{array}\right]
$$

Solution: Row reduce A,

$$
A \xrightarrow{\mathrm{RREF}}\left[\begin{array}{ccccc}
\boxed{1} & 0 & 0 & 1 & 1 \\
0 & \boxed{1} & 0 & -3 & -1 \\
0 & 0 & \boxed{1} & -2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So $r=3$ for this matrix. Then

$$
\begin{aligned}
\operatorname{dim}(\mathcal{N}(A)) & =n(A) & & \text { Definition NOM } \\
& =(n(A)+r(A))-r(A) & & \\
& =5-r(A) & & \text { Theorem RPNC } \\
& =5-3 & & \text { Theorem CRN } \\
& =2 & &
\end{aligned}
$$

We could also use Theorem BNS and create a basis for $\mathcal{N}(A)$ with $n-r=5-3=2$ vectors (because the solutions are described with 2 free variables) and arrive at the dimension as the size of this basis.
4. The set W below is a subspace of \mathbb{C}^{4}. Find the dimension of W. (15 points)

$$
W=\mathcal{S} p\left(\left\{\left[\begin{array}{c}
2 \\
-3 \\
4 \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
0 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
-4 \\
-3 \\
2 \\
5
\end{array}\right]\right\}\right)
$$

Solution: We will appeal to Theorem RSS (or you could consider this an appeal to Theorem BCSOC). Put the three columnn vectors of this spanning set into a matrix as columns and row-reduce.

$$
\left[\begin{array}{ccc}
2 & 3 & -4 \\
-3 & 0 & -3 \\
4 & 1 & 2 \\
1 & -2 & 5
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccc}
{[1} & 0 & 1 \\
0 & \boxed{1} & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The pivot columns are $D=\{1,2\}$ so we can "keep" the vectors corresponding to the pivot columns and set

$$
T=\left\{\left[\begin{array}{c}
2 \\
-3 \\
4 \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
0 \\
1 \\
-2
\end{array}\right]\right\}
$$

and conclude that $W=\mathcal{S} p(T)$ and T is linearly independent. In other words, T is a basis with two vectors, so W has dimension 2 .
5. The set $Z=\left\{\left.\left[\begin{array}{l}z_{1} \\ z_{2} \\ z_{3}\end{array}\right] \right\rvert\, 4 z_{1}-3 z_{2}+z_{3}=0\right\}$ is a subset of \mathbb{C}^{3}. Use the three-part test of Theorem TSS to prove that Z is a subspace of \mathbb{C}^{3}. No credit will be given for using other methods. (15 points)

Solution: See the solution for Exercise S.M20 which is almost identical. This question asks for the "less direct" solution.
6. Suppose that V is a vector space and $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m}\right\}$ is a subset of V. Prove that $\mathcal{S} p(S)$ is a subspace of V. (15 points)

Solution: This is Theorem SSS. See the proof given there.

