Show all of your work and explain your answers fully. There is a total of 100 possible points.

1. Let $\left.S=\left\{\begin{array}{c}1 \\ -2 \\ 2 \\ 5 \\ 3\end{array}\right],\left[\begin{array}{c}3 \\ 3 \\ 1 \\ 2 \\ -4\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ 2 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 2 \\ 2\end{array}\right]\right\}$. Is S linearly independent? (10 points)

Solution: Theorem LIVRN suggests we analyze a matrix whose columns are the vectors of S,

$$
A=\left[\begin{array}{cccc}
1 & 3 & 2 & 1 \\
-2 & 3 & 1 & 0 \\
2 & 1 & 2 & 1 \\
5 & 2 & -1 & 2 \\
3 & -4 & 1 & 2
\end{array}\right]
$$

Row-reducing the matrix A yields,

$$
\left[\begin{array}{cccc}
\begin{array}{ccc}
1 & 0 & 0 \\
0 & \boxed{1} & 0 \\
0 & 0 \\
0 & 0 & 1
\end{array} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We see that $r=4=n$, where r is the number of nonzero rows and n is the number of columns. By Theorem LIVRN, the set S is linearly independent.
2. Let $T=\left\{\left[\begin{array}{c}1 \\ 2 \\ -1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}3 \\ 2 \\ -1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{c}4 \\ 4 \\ -2 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ -1 \\ -2 \\ 0\end{array}\right]\right\}$. Is T linearly independent?(10 points)

Solution: Theorem LIVRN suggests we analyze a matrix whose columns are the vectors of S,

$$
A=\left[\begin{array}{cccc}
1 & 3 & 4 & -1 \\
2 & 2 & 4 & 2 \\
-1 & -1 & -2 & -1 \\
0 & 2 & 2 & -2 \\
1 & 2 & 3 & 0
\end{array}\right]
$$

Row-reducing the matrix A yields,

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 1 & 2 \\
0 & \boxed{1} & 1 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We see that $r=2 \neq 4=n$, where r is the number of nonzero rows and n is the number of columns. By Theorem LIVRN, the set S is not linearly independent.
3. Suppose $R=\left\{\left[\begin{array}{c}2 \\ -1 \\ 3 \\ 4 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ 2 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ 0 \\ 3 \\ -2\end{array}\right]\right\}$.
(a) Is $\mathbf{y}=\left[\begin{array}{c}1 \\ -1 \\ -8 \\ -4 \\ -3\end{array}\right]$ in $\mathcal{S} p(R)$? (10 points)

Solution: Form a linear combination, with unknown scalars, of R that equals \mathbf{y},

$$
a_{1}\left[\begin{array}{c}
2 \\
-1 \\
3 \\
4 \\
0
\end{array}\right]+a_{2}\left[\begin{array}{c}
1 \\
1 \\
2 \\
2 \\
-1
\end{array}\right]+a_{3}\left[\begin{array}{c}
3 \\
-1 \\
0 \\
3 \\
-2
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
-8 \\
-4 \\
-3
\end{array}\right]
$$

We want to know if there are values for the scalars that make the vector equation true since that is the definition of membership in $\mathcal{S} p(R)$. By Theorem SLSLC any such values will also be solutions to the linear system represented by the augmented matrix,

$$
\left[\begin{array}{cccc}
2 & 1 & 3 & 1 \\
-1 & 1 & -1 & -1 \\
3 & 2 & 0 & -8 \\
4 & 2 & 3 & -4 \\
0 & -1 & -2 & -3
\end{array}\right]
$$

Row-reducing the matrix yields,

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & -2 \\
0 & \boxed{1} & 0 & -1 \\
0 & 0 & \boxed{1} & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

From this we see that the system of equations is consistent (Theorem RCLS), and has a unique solution. This solution will provide a linear combination of the vectors in R that equals \mathbf{y}. So $\mathbf{y} \in R$.
(b) Is $\mathbf{z}=\left[\begin{array}{l}1 \\ 1 \\ 5 \\ 3 \\ 1\end{array}\right]$ in $\mathcal{S} p(R) ?(10$ points $)$

Solution: Form a linear combination, with unknown scalars, of R that equals \mathbf{z},

$$
a_{1}\left[\begin{array}{c}
2 \\
-1 \\
3 \\
4 \\
0
\end{array}\right]+a_{2}\left[\begin{array}{c}
1 \\
1 \\
2 \\
2 \\
-1
\end{array}\right]+a_{3}\left[\begin{array}{c}
3 \\
-1 \\
0 \\
3 \\
-2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
5 \\
3 \\
1
\end{array}\right]
$$

We want to know if there are values for the scalars that make the vector equation true since that is the definition of membership in $\mathcal{S} p(R)$. By Theorem SLSLC any such values will also be solutions to the linear
system represented by the augmented matrix,

$$
\left[\begin{array}{cccc}
2 & 1 & 3 & 1 \\
-1 & 1 & -1 & 1 \\
3 & 2 & 0 & 5 \\
4 & 2 & 3 & 3 \\
0 & -1 & -2 & 1
\end{array}\right]
$$

Row-reducing the matrix yields,

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

With a leading 1 in the last column, the system is inconsistent (Theorem RCLS), so there are no scalars a_{1}, a_{2}, a_{3} that will create a linear combination of the vectors in R that equal \mathbf{z}. So $\mathbf{z} \notin R$.
4. For the matrix B below, find a set S that is linearly independent and spans the null space of B, that is, $\mathcal{N}(B)=\mathcal{S} p(S) .(15$ points $)$

$$
B=\left[\begin{array}{cccc}
-3 & 1 & -2 & 7 \\
-1 & 2 & 1 & 4 \\
1 & 1 & 2 & -1
\end{array}\right]
$$

Solution: The requested set is described by Theorem BNS. It is easiest to find by using the procedure of Example VFSAL. Begin by row-reducing the matrix, viewing it as the coefficient matrix of a homogeneous system of equations. We obtain,

$$
\left[\begin{array}{cccc}
{[1} & 0 & 1 & -2 \\
0 & \boxed{1} & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Now build the vector form of the solutions to this homogeneous system (Theorem VFSLS). The free variables are x_{3} and x_{4}, corresponding to the columns without leading 1 's,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
2 \\
-1 \\
0 \\
1
\end{array}\right]
$$

The desired set S is simply the constant vectors in this expression, and these are the vectors \mathbf{z}_{1} and \mathbf{z}_{2} described by Theorem BNS.

$$
S=\left\{\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

5. Let T be the set of columns of the matrix B from the problem above. Define $W=\mathcal{S} p(T)$. Find a set R so that (1) R has 3 vectors, (2) R is a subset of T, and (3) $W=\mathcal{S} p(R)$. (15 points)

Solution: Let $T=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}\right\}$. The second vector of the set S from the previous problem is a solution to the homogeneous system with the matrix B as the coefficient matrix. By Theorem SLSLC it
provides the scalars for a linear combination of the columns of B (the vectors in T) that equals the zero vector, a relation of linear dependence on T,

$$
2 \mathbf{w}_{1}+(-1) \mathbf{w}_{2}+(1) \mathbf{w}_{4}=\mathbf{0}
$$

We can rearrange this equation by solving for \mathbf{w}_{4},

$$
\mathbf{w}_{4}=(-2) \mathbf{w}_{1}+\mathbf{w}_{2}
$$

This equation tells us that the vector \mathbf{w}_{4} is superfluous in the span construction that creates W. So $W=\mathcal{S} p\left(\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}\right)$. The requested set is $R=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$.
6. Suppose that $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^{m}$. Prove that $\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle$. (15 points)

Solution:

$$
\begin{aligned}
\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle & =\sum_{i=1}^{m}\left(u_{i}+v_{i}\right)\left(\overline{w_{i}}\right) & & \text { Definition IP } \\
& =\sum_{i=1}^{m} u_{i} \overline{w_{i}}+v_{i} \overline{w_{i}} & & \text { Distributivity in } \mathbb{C} \\
& =\sum_{i=1}^{m} u_{i} \overline{w_{i}}+\sum_{i=1}^{m} v_{i} \overline{w_{i}} & & \text { Commutativity in } \mathbb{C} \\
& =\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle & & \text { Definition IP }
\end{aligned}
$$

7. Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{C}^{m}$. Prove the following. (15 points)

$$
\mathcal{S} p\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right)=\mathcal{S} p\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, 5 \mathbf{v}_{1}+3 \mathbf{v}_{2}\right\}\right)
$$

Solution: This is an equality of sets, so Technique SE applies.
$X=\mathcal{S} p\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right) \subseteq \mathcal{S} p\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, 5 \mathbf{v}_{1}+3 \mathbf{v}_{2}\right\}\right)=Y$
Choose $\mathbf{x} \in X$. Then $\mathbf{x}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}$ for some scalars a_{1} and a_{2}. Then,

$$
\mathbf{x}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+0\left(5 \mathbf{v}_{1}+3 \mathbf{v}_{2}\right)
$$

which qualifies \mathbf{x} for membership in Y, as it is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, 5 \mathbf{v}_{1}+3 \mathbf{v}_{2}$.
$Y=\mathcal{S} p\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, 5 \mathbf{v}_{1}+3 \mathbf{v}_{2}\right\}\right) \subseteq \mathcal{S} p\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right)=X$
Choose $\mathbf{y} \in Y$. Then there are scalars a_{1}, a_{2}, a_{3} such that

$$
\mathbf{y}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3}\left(5 \mathbf{v}_{1}+3 \mathbf{v}_{2}\right)
$$

Rearranging, we obtain,

$$
\begin{aligned}
\mathbf{y} & =a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3}\left(5 \mathbf{v}_{1}+3 \mathbf{v}_{2}\right) & & \\
& =a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+5 a_{3} \mathbf{v}_{1}+3 a_{3} \mathbf{v}_{2} & & \text { Property DVAC } \\
& =a_{1} \mathbf{v}_{1}+5 a_{3} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+3 a_{3} \mathbf{v}_{2} & & \text { Property CC } \\
& =\left(a_{1}+5 a_{3}\right) \mathbf{v}_{1}+\left(a_{2}+3 a_{3}\right) \mathbf{v}_{2} & & \text { Property DSAC }
\end{aligned}
$$

this is an expression for \mathbf{y} as a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}, earning \mathbf{y} membership in X. Since X is a subset of Y, and vice versa, we see that $X=Y$, as desired.

