Show all of your work and explain your answers fully. There is a total of 90 possible points.

1. Consider the subspace

$$
W=\mathcal{S} p\left(\left\{\left[\begin{array}{cc}
2 & 1 \\
3 & -1
\end{array}\right],\left[\begin{array}{ll}
4 & 0 \\
2 & 3
\end{array}\right],\left[\begin{array}{cc}
-3 & 1 \\
2 & 1
\end{array}\right]\right\}\right)
$$

of the vector space of 2×2 matrices, M_{22}. Is $C=\left[\begin{array}{cc}-3 & 3 \\ 6 & -4\end{array}\right]$ an element of W ? (15 points)
Solution: In order to belong to W, we must be able to express C as a linear combination of the elements in the spanning set of W. So we begin with such an expression, using the unknowns a, b, c for the scalars in the linear combination.

$$
C=\left[\begin{array}{cc}
-3 & 3 \\
6 & -4
\end{array}\right]=a\left[\begin{array}{cc}
2 & 1 \\
3 & -1
\end{array}\right]+b\left[\begin{array}{ll}
4 & 0 \\
2 & 3
\end{array}\right]+c\left[\begin{array}{cc}
-3 & 1 \\
2 & 1
\end{array}\right]
$$

Massaging the right-hand side, according to the definition of the vector space operations in M_{22} (Example VSM), we find the matrix equality,

$$
\left[\begin{array}{cc}
-3 & 3 \\
6 & -4
\end{array}\right]=\left[\begin{array}{cc}
2 a+4 b-3 c & a+c \\
3 a+2 b+2 c & -a+3 b+c
\end{array}\right]
$$

Matrix equality allows us to form a system of four equations in three variables, whose augmented matrix row-reduces as follows,

$$
\left[\begin{array}{cccc}
2 & 4 & -3 & -3 \\
1 & 0 & 1 & 3 \\
3 & 2 & 2 & 6 \\
-1 & 3 & 1 & -4
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
{[1} & 0 & 0 & 2 \\
0 & \boxed{1} & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since this system of equations is consistent (Theorem RCLS), a solution will provide values for a, b and c that alllow us to recognize C as an element of W.
2. Determine if the set $T=\left\{x^{2}-x+5,4 x^{3}-x^{2}+5 x, 3 x+2\right\}$ spans the vector space of polynomials with degree 4 or less, P_{4}. (15 points)

Solution: The vector space P_{4} has dimension 5 by Theorem DP. Since T contains only 3 vectors, and $3<5$, Theorem G tells us that T does not span P_{5}.
3. In the crazy vector space C (Example CVS), is the set $S=\{(0,2),(2,8)\}$ linearly independent? (15 points)

Solution: We begin with a relation of linear dependence using unknown scalars a and b. We wish to know if these scalars must both be zero. Recall that the zero vector in C is $(-1,-1)$ and that the definitions of vector addition and scalar multiplication are not what we might expect.

$$
\begin{aligned}
\mathbf{0}=(-1,-1) & =a(0,2)+b(2,8) & & \text { Definition RLD } \\
& =(0 a+a-1,2 a+a-1)+(2 b+b-1,8 b+b-1) & & \text { Scalar multiplication, Example CVS } \\
& =(a-1,3 a-1)+(3 b-1,9 b-1) & & \\
& =(a-1+3 b-1+1,3 a-1+9 b-1+1) & & \text { Vector addition, Example CVS } \\
& =(a+3 b-1,3 a+9 b-1) & &
\end{aligned}
$$

From this we obtain two equalities, which can be converted to a homogeneous system of equations,

$$
\begin{array}{rlrl}
-1 & =a+3 b-1 & a+3 b & =0 \\
-1 & =3 a+9 b-1 & 3 a+9 b & =0
\end{array}
$$

This homogeneous system has a singular coefficient matrix (Theorem SMZD), and so has more than just the trivial solution (Definition NM). Any nontrivial solution will give us a nontrivial relation of linear dependence on S. So S is linearly dependent (Definition LI).
4. A 2×2 matrix B is upper-triangular if $[B]_{21}=0$. Let $U T_{2}$ be the set of all 2×2 upper-triangular matrices. Then $U T_{2}$ is a subspace of the vector space of all 2×2 matrices, M_{22} (you may assume this). Determine the dimension of $U T_{2}$ providing all of the necessary justifications for your answer. (15 points)

Solution: A typical matrix from $U T_{2}$ looks like

$$
\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]
$$

where $a, b, c \in \mathbb{C}$ are arbitrary scalars. Observing this we can then write

$$
\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

which says that

$$
R=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

is a spanning set for $U T_{2}$ (Definition TSS). Is R is linearly independent? If so, it is a basis for $U T_{2}$. So consider a relation of linear dependence on R,

$$
\alpha_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\alpha_{2}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+\alpha_{3}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\mathcal{O}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

From this equation, one rapidly arrives at the conclusion that $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$. So R is a linearly independent set (Definition LI), and hence is a basis (Definition B) for $U T_{2}$. Now, we simply count up the size of the set R to see that the dimension of $U T_{2}$ is $\operatorname{dim}\left(U T_{2}\right)=3$.
5. A square matrix A of size n is upper-triangular if $[A]_{i j}=0$ whenever $i>j$. Let $U T_{n}$ be the set of all upper-triangular matrices of size n. Prove that $U T_{n}$ is a subspace of the vector space of all square matrices of size $n, M_{n n}$. (15 points)

Solution: Apply Theorem TSS.
First, the zero vector of $M_{n n}$ is the zero matrix, \mathcal{O}, whose entries are all zero (Definition ZM). This matrix then meets the condition that $[\mathcal{O}]_{i j}=0$ for $i>j$ and so is an element of $U T_{n}$.
Suppose $A, B \in U T_{n}$. Is $A+B \in U T_{n}$? We examine the entries of $A+B$ "below" the diagonal. That is, in the following, assume that $i>j$.

$$
\begin{aligned}
{[A+B]_{i j} } & =[A]_{i j}+[B]_{i j} & & \text { Definition MA } \\
& =0+0 & & A, B \in U T_{n} \\
& =0 & &
\end{aligned}
$$

which qualifies $A+B$ for membership in $U T_{n}$.
Suppose $\alpha \in \mathbb{C}$ and $A \in U T_{n}$. Is $\alpha A \in U T_{n}$? We examine the entries of αA "below" the diagonal. That is, in the following, assume that $i>j$.

$$
\begin{aligned}
{[\alpha A]_{i j} } & =\alpha[A]_{i j} & & \text { Definition MSM } \\
& =\alpha 0 & & A \in U T_{n} \\
& =0 & &
\end{aligned}
$$

which qualifies αA for membership in $U T_{n}$.
Having fulfilled the three conditions of Theorem TSS we see that $U T_{n}$ is a subspace of $M_{n n}$.
6. Suppose that V is a vector space. Then by Property AI we know that for every vector $\mathbf{v} \in V$, there is an additive inverse $-\mathbf{v} \in V$. Prove that the additive inverse is unique for each choice of \mathbf{v}. (15 points)

Solution: This is Theorem AIU. A careful proof can be found there.

