Show all of your work and explain your answers fully. There is a total of 90 possible points.

1. Consider the subspace

$$W = \mathcal{S}p\left(\left\{ \begin{bmatrix} 2 & 1\\ 3 & -1 \end{bmatrix}, \begin{bmatrix} 4 & 0\\ 2 & 3 \end{bmatrix}, \begin{bmatrix} -3 & 1\\ 2 & 1 \end{bmatrix} \right\}\right)$$

of the vector space of 2×2 matrices, M_{22} . Is $C = \begin{bmatrix} -3 & 3 \\ 6 & -4 \end{bmatrix}$ an element of W? (15 points)

Solution: In order to belong to W, we must be able to express C as a linear combination of the elements in the spanning set of W. So we begin with such an expression, using the unknowns a, b, c for the scalars in the linear combination.

$$C = \begin{bmatrix} -3 & 3\\ 6 & -4 \end{bmatrix} = a \begin{bmatrix} 2 & 1\\ 3 & -1 \end{bmatrix} + b \begin{bmatrix} 4 & 0\\ 2 & 3 \end{bmatrix} + c \begin{bmatrix} -3 & 1\\ 2 & 1 \end{bmatrix}$$

Massaging the right-hand side, according to the definition of the vector space operations in M_{22} (Example VSM), we find the matrix equality,

$$\begin{bmatrix} -3 & 3\\ 6 & -4 \end{bmatrix} = \begin{bmatrix} 2a+4b-3c & a+c\\ 3a+2b+2c & -a+3b+c \end{bmatrix}$$

Matrix equality allows us to form a system of four equations in three variables, whose augmented matrix row-reduces as follows,

2	4	-3	-3		$\lceil 1 \rceil$	0	0	2
1	0	1	3	RREF	0	1	0	-1
3	2	2	6	\longrightarrow	0	0	1	1
$\lfloor -1 \rfloor$	3	1	-4			0	$\overline{0}$	0

Since this system of equations is consistent (Theorem RCLS), a solution will provide values for a, b and c that allow us to recognize C as an element of W.

2. Determine if the set $T = \{x^2 - x + 5, 4x^3 - x^2 + 5x, 3x + 2\}$ spans the vector space of polynomials with degree 4 or less, P_4 . (15 points)

Solution: The vector space P_4 has dimension 5 by Theorem DP. Since T contains only 3 vectors, and 3 < 5, Theorem G tells us that T does not span P_5 .

3. In the crazy vector space C (Example CVS), is the set $S = \{(0, 2), (2, 8)\}$ linearly independent? (15 points)

Solution: We begin with a relation of linear dependence using unknown scalars a and b. We wish to know if these scalars *must* both be zero. Recall that the zero vector in C is (-1, -1) and that the definitions of vector addition and scalar multiplication are not what we might expect.

$$\begin{aligned} \mathbf{0} &= (-1, -1) = a(0, 2) + b(2, 8) & \text{Definition RLD} \\ &= (0a + a - 1, 2a + a - 1) + (2b + b - 1, 8b + b - 1) & \text{Scalar multiplication, Example CVS} \\ &= (a - 1, 3a - 1) + (3b - 1, 9b - 1) \\ &= (a - 1 + 3b - 1 + 1, 3a - 1 + 9b - 1 + 1) & \text{Vector addition, Example CVS} \\ &= (a + 3b - 1, 3a + 9b - 1) \end{aligned}$$

From this we obtain two equalities, which can be converted to a homogeneous system of equations,

$$-1 = a + 3b - 1$$

 $-1 = 3a + 9b - 1$
 $3a + 9b = 0$

This homogeneous system has a singular coefficient matrix (Theorem SMZD), and so has more than just the trivial solution (Definition NM). Any nontrivial solution will give us a nontrivial relation of linear dependence on S. So S is linearly dependent (Definition LI).

4. A 2 × 2 matrix B is upper-triangular if $[B]_{21} = 0$. Let UT_2 be the set of all 2 × 2 upper-triangular matrices. Then UT_2 is a subspace of the vector space of all 2 × 2 matrices, M_{22} (you may assume this). Determine the dimension of UT_2 providing all of the necessary justifications for your answer. (15 points)

Solution: A typical matrix from UT_2 looks like

$$\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$$

where $a, b, c \in \mathbb{C}$ are arbitrary scalars. Observing this we can then write

$$\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

which says that

$$R = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

is a spanning set for UT_2 (Definition TSS). Is R is linearly independent? If so, it is a basis for UT_2 . So consider a relation of linear dependence on R,

$$\alpha_1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \mathcal{O} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

From this equation, one rapidly arrives at the conclusion that $\alpha_1 = \alpha_2 = \alpha_3 = 0$. So R is a linearly independent set (Definition LI), and hence is a basis (Definition B) for UT_2 . Now, we simply count up the size of the set R to see that the dimension of UT_2 is dim $(UT_2) = 3$.

5. A square matrix A of size n is upper-triangular if $[A]_{ij} = 0$ whenever i > j. Let UT_n be the set of all upper-triangular matrices of size n. Prove that UT_n is a subspace of the vector space of all square matrices of size n, M_{nn} . (15 points)

Solution: Apply Theorem TSS.

First, the zero vector of M_{nn} is the zero matrix, \mathcal{O} , whose entries are all zero (Definition ZM). This matrix then meets the condition that $[\mathcal{O}]_{ij} = 0$ for i > j and so is an element of UT_n .

Suppose $A, B \in UT_n$. Is $A + B \in UT_n$? We examine the entries of A + B "below" the diagonal. That is, in the following, assume that i > j.

$$[A + B]_{ij} = [A]_{ij} + [B]_{ij}$$
 Definition MA
= 0 + 0 $A, B \in UT_n$
= 0

which qualifies A + B for membership in UT_n .

Suppose $\alpha \in \mathbb{C}$ and $A \in UT_n$. Is $\alpha A \in UT_n$? We examine the entries of αA "below" the diagonal. That is, in the following, assume that i > j.

$$[\alpha A]_{ij} = \alpha [A]_{ij} \qquad \text{Definition MSM}$$
$$= \alpha 0 \qquad \qquad A \in UT_n$$
$$= 0$$

which qualifies αA for membership in UT_n .

Having fulfilled the three conditions of Theorem TSS we see that UT_n is a subspace of M_{nn} .

6. Suppose that V is a vector space. Then by Property AI we know that for every vector $\mathbf{v} \in V$, there is an additive inverse $-\mathbf{v} \in V$. Prove that the additive inverse is unique for each choice of \mathbf{v} . (15 points)

Solution: This is Theorem AIU. A careful proof can be found there.