Show all of your work and explain your answers fully. There is a total of 90 possible points.

1. Find a matrix representation of the linear transformation T relative to the bases B and C. (15 points)

$$
\begin{aligned}
& T: P_{2} \mapsto \mathbb{C}^{2}, \quad T(p(x))=\left[\begin{array}{l}
p(1) \\
p(3)
\end{array}\right] \\
& B=\left\{2-5 x+x^{2}, 1+x-x^{2}, x^{2}\right\} \\
& C=\left\{\left[\begin{array}{l}
3 \\
4
\end{array}\right],\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right\}
\end{aligned}
$$

Solution: Applying Definition MR,

$$
\begin{aligned}
\rho_{C}\left(T\left(2-5 x+x^{2}\right)\right) & =\rho_{C}\left(\left[\begin{array}{l}
-2 \\
-4
\end{array}\right]\right)=\rho_{C}\left(2\left[\begin{array}{l}
3 \\
4
\end{array}\right]+(-4)\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
-4
\end{array}\right] \\
\rho_{C}\left(T\left(1+x-x^{2}\right)\right) & =\rho_{C}\left(\left[\begin{array}{c}
1 \\
-5
\end{array}\right]\right)=\rho_{C}\left(13\left[\begin{array}{l}
3 \\
4
\end{array}\right]+(-19)\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)=\left[\begin{array}{c}
13 \\
-19
\end{array}\right] \\
\rho_{C}\left(T\left(x^{2}\right)\right) & =\rho_{C}\left(\left[\begin{array}{l}
1 \\
9
\end{array}\right]\right)=\rho_{C}\left((-15)\left[\begin{array}{l}
3 \\
4
\end{array}\right]+23\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)=\left[\begin{array}{c}
-15 \\
23
\end{array}\right]
\end{aligned}
$$

So the resulting matrix representation is

$$
M_{B, C}^{T}=\left[\begin{array}{ccc}
2 & 13 & -15 \\
-4 & -19 & 23
\end{array}\right]
$$

2. Prove that the linear transformation S is invertible. Then find a formula for the inverse linear transformation, S^{-1}, by employing a matrix inverse. (15 points)

$$
S: P_{1} \mapsto M_{1,2}, \quad S(a+b x)=\left[\begin{array}{ll}
3 a+b & 2 a+b
\end{array}\right]
$$

Solution: First, build a matrix representation of S (Definition MR). We are free to choose whatever bases we wish, so we should choose ones that are easy to work with, such as

$$
\begin{aligned}
B & =\{1, x\} \\
C & =\left\{\left[\begin{array}{ll}
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1
\end{array}\right]\right\}
\end{aligned}
$$

The resulting matrix representation is then

$$
M_{B, C}^{T}=\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right]
$$

this matrix is invertible, since it has a nonzero determinant, so by Theorem XX the linear transformation S is invertible. We can us the matrix inverse and Theorem IMR to find a formula for the inverse linear
transformation,

$$
\begin{aligned}
S^{-1}\left(\left[\begin{array}{ll}
a & b
\end{array}\right]\right) & =\rho_{B}^{-1}\left(M_{C, B}^{S-1} \rho_{C}\left(\left[\begin{array}{ll}
a & b
\end{array}\right]\right)\right) & & \text { Theorem FTM } \\
& =\rho_{B}^{-1}\left(\left(M_{B, C}^{S}\right)^{-1} \rho_{C}\left(\left[\begin{array}{ll}
a & b
\end{array}\right]\right)\right) & & \text { Theorem IMR } \\
& =\rho_{B}^{-1}\left(\left(M_{B, C}^{S}\right)^{-1}\left[\begin{array}{l}
a \\
b
\end{array}\right]\right) & & \text { Definition VR } \\
& =\rho_{B}^{-1}\left(\left(\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right]\right)^{-1}\left[\begin{array}{l}
a \\
b
\end{array}\right]\right) & & \\
& =\rho_{B}^{-1}\left(\left[\begin{array}{cc}
1 & -1 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]\right) & & \text { Definition MI } \\
& =\rho_{B}^{-1}\left(\left[\begin{array}{c}
a-b \\
-2 a+3 b
\end{array}\right]\right) & & \text { Definition MVI } \\
& =(a-b)+(-2 a+3 b) x & & \text { Definition VR }
\end{aligned}
$$

3. Let S_{22} be the vector space of 2×2 symmetric matrices. Find a basis B for S_{22} that yields a diagonal matrix representation of the linear transformation R. (15 points)

$$
R: S_{22} \mapsto S_{22}, \quad R\left(\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\right)=\left[\begin{array}{cc}
-5 a+2 b-3 c & -12 a+5 b-6 c \\
-12 a+5 b-6 c & 6 a-2 b+4 c
\end{array}\right]
$$

Solution: Begin with a matrix representation of R, any matrix representation, but use the same basis for both instances of S_{22}. We'll choose a basis that makes it easy to compute vector representations in S_{22}.

$$
B=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

Then the resulting matrix representation of R (Theorem MR) is

$$
M_{B, B}^{R}=\left[\begin{array}{ccc}
-5 & 2 & -3 \\
-12 & 5 & -6 \\
6 & -2 & 4
\end{array}\right]
$$

Now, compute the eigenvalues and eigenvectors of this matrix, with the goal of diagonalizing the matrix (Theorem DC),

$$
\begin{array}{ll}
\lambda=2 & E_{M_{B, B}^{R}}(2)=\mathcal{S} p\left(\left\{\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right]\right\}\right) \\
\lambda=1 & E_{M_{B, B}^{R}}(1)=\mathcal{S} p\left(\left\{\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]\right\}\right)
\end{array}
$$

The three vectors that occur as basis elements for these eigenspaces will together form a linearly independent set (check this!). So these column vectors may be employed in a matrix that will diagonalize the matrix representation. If we "un-coordinatize" these three column vectors relative to the basis B, we will find three linearly independent elements of S_{22} that are eigenvectors of the linear transformation R (Theorem EER). A
matrix representation relative to this basis of eigenvectors will be diagonal, with the eigenvalues $(\lambda=2,1)$ as the diagonal elements. Here we go,

$$
\begin{aligned}
\rho_{B}^{-1}\left(\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right]\right) & =(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(-2)\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+1\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-1 & -2 \\
-2 & 1
\end{array}\right] \\
\rho_{B}^{-1}\left(\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right]\right) & =(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+0\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+2\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right] \\
\rho_{B}^{-1}\left(\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]\right) & =1\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+3\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+0\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
3 & 0
\end{array}\right]
\end{aligned}
$$

So the requested basis of S_{22}, yielding a diagonal matrix representation of R, is

$$
\left\{\left[\begin{array}{cc}
-1 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right],\left[\begin{array}{ll}
1 & 3 \\
3 & 0
\end{array}\right]\right\}
$$

4. Use a matrix representation to find a basis for the range of the linear transformation L. (15 points)

$$
L: M_{22} \mapsto P_{2}, \quad T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a+2 b+4 c+d)+(3 a+c-2 d) x+(-a+b+3 c+3 d) x^{2}
$$

Solution: As usual, build any matrix representation of L, most likely using a "nice" bases, such as

$$
\begin{aligned}
B & =\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \\
C & =\left\{1, x, x^{2}\right\}
\end{aligned}
$$

Then the matrix representation (Theorem MR) is,

$$
M_{B, C}^{L}=\left[\begin{array}{cccc}
1 & 2 & 4 & 1 \\
3 & 0 & 1 & -2 \\
-1 & 1 & 3 & 3
\end{array}\right]
$$

Theorem IR tells us that we can compute the range of the matrix representation, then use the isomorphism ρ_{C}^{-1} to convert the range of the matrix representation into the range of the linear transformation. So we first analyze the matrix representation,

$$
\left[\begin{array}{cccc}
1 & 2 & 4 & 1 \\
3 & 0 & 1 & -2 \\
-1 & 1 & 3 & 3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & -1 \\
0 & \boxed{1} & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

With three nonzero rows in the reduced row-echelon form of the matrix, we know the range has dimension 3. Since P_{2} has dimension 3 (Theorem DP), the range must be all of P_{2}. So any basis of P_{2} would suffice as a basis for the range. For instance, C itself would be a correct answer.

A more laborious approach would be to use Theorem BROC and choose the first three columns of the matrix representation as a basis for the range of the matrix representation. These could then be "un-coordinatized" with ρ_{C}^{-1} to yield a ("not nice") basis for P_{2}.
5. The linear transformation D performs differentiation on polynomials. Use a matrix representation of D to find the rank and nullity of D. (15 points)

$$
D: P_{n} \mapsto P_{n}, \quad D(p(x))=p^{\prime}(x)
$$

Solution: Build a matrix representation (Theorem MR) with the set

$$
B=\left\{1, x, x^{2}, \ldots, x^{n}\right\}
$$

employed as a basis of both the domain and codomain. Then

$$
\begin{gathered}
\rho_{B}(D(1))=\rho_{B}(0)=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] \\
\vdots \\
\rho_{B}\left(D\left(x^{2}\right)\right)=\rho_{B}(2 x)=\left[\begin{array}{c}
0 \\
2 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] \\
\rho_{B}\left(D\left(x^{n}\right)\right)=\rho_{B}\left(n x^{n-1}\right)=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
n \\
0
\end{array}\right]
\end{gathered}
$$

and the resulting matrix representation is

$$
M_{B, B}^{D}=\left[\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 2 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & 3 & \ldots & 0 & 0 \\
& \vdots & & & \ddots & & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & n \\
0 & 0 & 0 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

This $(n+1) \times(n+1)$ matrix is very close to being in reduced row-echelon form. Multiply row i by $\frac{1}{i}$, for $1 \leq i \leq n$, to convert it to reduced row-echelon form. From this we can see that matrix representation $M_{B, B}^{D}$ has rank n and nullity 1. Applying Theorem INS and Theorem IR tells us that the linear transformation D will have the same values for the rank and nullity, as well.
6. Suppose that B is a basis of the vector space V. Prove that vector representation, ρ_{B}, is injective. (You may assume that ρ_{B} is a linear transformation.) (15 points)

Solution: This is Theorem VRI. See the proof given there.

