Show all of your work and explain your answers fully. There is a total of 100 possible points. If you use a calculator or Mathematica on a problem be sure to write down both the input and output.

1. Let $\mathbf{y}=\left[\begin{array}{l}8 \\ 2 \\ 1\end{array}\right]$ and let $S=\left\{\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}-1 \\ -1 \\ -2\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]\right\}$. Is $\mathbf{y} \in\langle S\rangle$? (15 points)
2. Write the solutions to the system of equations below in vector form. (15 points)

$$
\begin{aligned}
-x_{1}+x_{3}+x_{4} & =1 \\
3 x_{1}+1 x_{2}-2 x_{3} & =0 \\
4 x_{1}+2 x_{2}-2 x_{3}+2 x_{4} & =2
\end{aligned}
$$

3. Let A be the matrix below. (20 points)

$$
\left[\begin{array}{cccc}
2 & 3 & 1 & 4 \\
1 & 2 & 1 & 3 \\
-1 & 0 & 1 & 1
\end{array}\right]
$$

(a) Find a set S so that $\mathcal{N}(A)=\langle S\rangle$.

Solution: Theorem SSNS provides formulas for a set S with this property, but first we must row-reduce A

$$
A \xrightarrow{\mathrm{RREF}}\left[\begin{array}{cccc}
\boxed{1} & 0 & -1 & -1 \\
0 & \boxed{1} & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

x_{3} and x_{4} would be the free variables in the homogeneous system $\mathcal{L S}(A, \mathbf{0})$ and Theorem SSNS provides the set $S=\left\{\mathbf{z}_{1}, \mathbf{z}_{2}\right\}$ where

$$
\mathbf{z}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right] \quad \mathbf{z}_{2}=\left[\begin{array}{c}
1 \\
-2 \\
0 \\
1
\end{array}\right]
$$

(b) If $\mathbf{z}=\left[\begin{array}{c}3 \\ -5 \\ 1 \\ 2\end{array}\right]$, then show that $\mathbf{z} \in \mathcal{N}(A)$.

Solution: Simply employ the components of the vector \mathbf{z} as the variables in the homeneous system $\mathcal{L S}(A, \mathbf{0})$. The three equations of this sytem evaluate as follows,

$$
\begin{aligned}
2(3)+3(-5)+1(1)+4(2) & =0 \\
1(3)+2(-5)+1(1)+3(2) & =0 \\
-1(3)+0(-5)+1(1)+1(2) & =0
\end{aligned}
$$

Since each result is zero, \mathbf{z} qualifies for membership in $\mathcal{N}(A)$.
(c) Write \mathbf{z} as a linear combination of the vectors in S.

Solution: By Theorem SSNS we know this must be possible. Find scalars α_{1} and α_{2} so that

$$
\alpha_{1} \mathbf{z}_{1}+\alpha_{2} \mathbf{z}_{2}=\alpha_{1}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
1 \\
-2 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 \\
-5 \\
1 \\
2
\end{array}\right]=\mathbf{z}
$$

Theorem SLSLC allows us to convert this question into a question about a system of four equations in two variables. The augmented matrix of this system row-reduces to

$$
\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & \boxed{1} & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

A solution is $\alpha_{1}=1$ and $\alpha_{2}=2$. (Notice too that this solution is unique.)
4. Let T be the set of vectors $T=\left\{\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}4 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 6\end{array}\right]\right\}$. Find two proper subsets of T, named R and S, and such that $\langle R\rangle=\langle T\rangle$ and $\langle S\rangle=\langle T\rangle$. Prove that one of these two sets (R or S) is linearly independent. Solution: Let A be the matrix whose columns are the vectors in T. Then row-reduce A,

$$
A \xrightarrow{\mathrm{RREF}} B=\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 2 \\
0 & \boxed{1} & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

From Theorem BS we can form R by choosing the columns of A that correspond to the pivot columns of B. Theorem BS also gurantees that R will be linearly independent.

$$
R=\left\{\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
4 \\
2 \\
3
\end{array}\right]\right\}
$$

That was easy. To find a second set will require a bit more work. From B we can obtain a solution to $\mathcal{L S}(A, \mathbf{0})$, which by Theorem SLSLC will provide a nontrivial relation of linear dependence on the columns of A, which are the vectors in T. To wit, choose the free variable x_{4} to be 1 , then $x_{1}=-2, x_{2}=1, x_{3}=-1$, and so

$$
(-2)\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]+(1)\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]+(-1)\left[\begin{array}{l}
4 \\
2 \\
3
\end{array}\right]+(1)\left[\begin{array}{l}
3 \\
0 \\
6
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

this equation can be rewritten with the second vector staying put, and the other three moving to the other side of the equality,

$$
\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]+=(2)\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]+(1)\left[\begin{array}{l}
4 \\
2 \\
3
\end{array}\right]+(-1)\left[\begin{array}{l}
3 \\
0 \\
6
\end{array}\right]
$$

this is enough to conclude that the second vector in T is "surplus" and can be replaced. So set

$$
S=\left\{\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
4 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
6
\end{array}\right]\right\}
$$

and then $\langle S\rangle=\langle T\rangle . T$ is also a linearly independent set, but we would need to show that directly.
5. Suppose that S is a nonempty set of vectors from \mathbb{C}^{m}. Prove that $\mathbf{0} \in\langle S\rangle$ (i.e. the zero vector is an element of the span of S). (15 points)

Solution: Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$. Choose scalars, $\alpha_{1}=0, \alpha_{2}=0, \alpha_{2}=0, \ldots, \alpha_{n}=0$. Then

$$
\begin{aligned}
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+\cdots+\alpha_{n} \mathbf{v}_{n} & =0 \mathbf{v}_{1}+0 \mathbf{v}_{2}+0 \mathbf{v}_{3}+0 \mathbf{v}_{1}+\cdots+0 \mathbf{v}_{n} & & \\
& =\mathbf{0}+\mathbf{0}+\mathbf{0}+\cdots+\mathbf{0} & & \text { Definition CVSM } \\
& =\mathbf{0} & & \text { Definition CVA }
\end{aligned}
$$

Since the zero vector, $\mathbf{0}$, is a linear combination of the vectors in S, we can say $\mathbf{0} \in\langle S\rangle$ by Definition SS.
6. Suppose that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent set of vectors.

Prove that $\left\{\mathbf{v}_{1}-\mathbf{v}_{2}, \mathbf{v}_{2}-\mathbf{v}_{3}, \mathbf{v}_{3}-\mathbf{v}_{4}, \ldots, \mathbf{v}_{n}-\mathbf{v}_{1}\right\}$ is a linearly dependent set. (15 points)
Solution: Consider the following linear combination

$$
\begin{aligned}
1\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)+ & \left(\mathbf{v}_{2}-\mathbf{v}_{3}\right)+1\left(\mathbf{v}_{3}-\mathbf{v}_{4}\right)+\cdots+1\left(\mathbf{v}_{n}-\mathbf{v}_{1}\right) \\
& =\mathbf{v}_{1}-\mathbf{v}_{2}+\mathbf{v}_{2}-\mathbf{v}_{3}+\mathbf{v}_{3}-\mathbf{v}_{4}+\cdots+\mathbf{v}_{n}-\mathbf{v}_{1} \\
& =\mathbf{v}_{1}+\mathbf{0}+\mathbf{0}+\cdots+\mathbf{0}-\mathbf{v}_{1} \\
& =\mathbf{0}
\end{aligned}
$$

