Show all of your work and explain your answers fully. There is a total of 100 possible points. If you use a calculator or Mathematica on a problem be sure to write down both the input and output.

1. Compute the determinant of the matrix A below by first using row operations to convert it to an uppertriangular matrix. (15 points)

$$
A=\left[\begin{array}{ccc}
1 & 1 & -6 \\
3 & 1 & 2 \\
-2 & -1 & 9
\end{array}\right]
$$

Solution:

$$
\begin{array}{rlrl}
\left|\begin{array}{ccc}
1 & 1 & -6 \\
3 & 1 & 2 \\
-2 & -1 & 9
\end{array}\right| & =\left|\begin{array}{ccc}
1 & 1 & -6 \\
0 & -2 & 20 \\
-2 & -1 & 9
\end{array}\right| & & \text { Theorem DRCMA, }-3 R_{1}+1 \\
& =\left|\begin{array}{ccc}
1 & 1 & -6 \\
0 & -2 & 20 \\
0 & 1 & -3
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & 1 & -6 \\
0 & -2 & 20 \\
0 & 1 & -3
\end{array}\right| \\
& =-\left|\begin{array}{ccc}
1 & 1 & -6 \\
0 & 1 & -3 \\
0 & -2 & 20
\end{array}\right| & & \text { Theorem DRCMA, } 2 R_{1}+R_{3} \\
& =-\left|\begin{array}{ccc}
1 & 1 & -6 \\
0 & 1 & -3 \\
0 & 0 & 14
\end{array}\right| & & \text { Theorem DRCMA, } 2 R_{1}+R_{3} \\
& =-(1)(1)(14)=-14 & \text { Theorem DRCMA, } 2 R_{2}+R_{3}
\end{array}
$$

2. For the matrix B below, find the eigenvalues, eigenspaces, algebraic and geometric multiplicities, without the aid of a calculator. (20 points)

$$
B \xlongequal{ }\left|\begin{array}{ccc}
7 & -9 & -6 \\
6 & -8 & -6 \\
-2 & 3 & 3
\end{array}\right|
$$

Solution:

$$
\begin{array}{rlrl}
p_{B}(x) & =\operatorname{det}\left(B-x I_{3}\right) & & \text { Definition CP } \\
& =\left|\begin{array}{ccc}
7-x & -9 & -6 \\
6 & -8-x & -6 \\
-2 & 3 & 3-x
\end{array}\right| & \\
& =(7-x)\left|\begin{array}{cc}
-8-x & -6 \\
3 & 3-x
\end{array}\right|-(-9)\left|\begin{array}{cc}
6 & -6 \\
-2 & 3-x
\end{array}\right|+(-6)\left|\begin{array}{cc}
6 & -8-x \\
-2 & 3
\end{array}\right| & \text { Definition DM } \\
& =(7-x)\left(x^{2}+5 x-6\right)+9(6-6 x)+(-6)(-2 x+2) & \text { Theorem DMST } \\
& =-x^{3}+2 x^{2}-x & & \\
& =-x(x-1)^{2} & &
\end{array}
$$

Roots of the characteristic polynomial are the eigenvalues of the matrix (Theorem EMRCP) and their algebraic multiplicities are the multiplicities of the roots (Definition AME),

$$
\begin{array}{llll}
\lambda=0 & \alpha_{A}(0)=1 & \lambda=1 & \alpha_{A}(1)=2
\end{array}
$$

Eigenspaces are null spaces (Definition EM) and geometric multiplicities are dimensions of these subspaces (Definition GME),

$$
\begin{aligned}
& \lambda=0 \\
& \lambda=1 \\
& B-0 I_{3}=\left[\begin{array}{ccc}
7 & -9 & -6 \\
6 & -8 & -6 \\
-2 & 3 & 3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right] \\
& E_{B}(0)=\mathcal{N}\left(B-0 I_{3}\right)=\left\langle\left\{\left[\begin{array}{c}
-3 \\
-3 \\
1
\end{array}\right]\right\}\right\rangle \\
& B-1 I_{3}=\left[\begin{array}{ccc}
6 & -9 & -6 \\
6 & -9 & -6 \\
-2 & 3 & 2
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccc}
1 & -\frac{3}{2} & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& E_{B}(1)=\mathcal{N}\left(B-1 I_{3}\right)=\left\langle\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right]\right\}\right\rangle \\
& \gamma_{B}(0)=1 \\
& \gamma_{B}(1)=2
\end{aligned}
$$

3. Given the matrix C below, find a diagonal matrix D and a nonsingular matrix S such that $S^{-1} C S=D$. (You may use your calculator on this problem.) (20 points)

$$
C=\left[\begin{array}{cccc}
-5 & 4 & 4 & 0 \\
-8 & 7 & 8 & 0 \\
-3 & -3 & 2 & -6 \\
6 & -6 & -6 & -1
\end{array}\right]
$$

Solution: With our favorite computing device we find eigenvalues and eigenspaces,

$$
\begin{array}{ll}
\lambda=3 & E_{C}(3)=\left\langle\left[\begin{array}{c}
-2 \\
-4 \\
0 \\
3
\end{array}\right]\right\rangle \\
\lambda=2 & E_{C}(2)=\left\langle\left[\begin{array}{c}
-4 \\
-8 \\
1 \\
6
\end{array}\right]\right\rangle \\
\lambda=-1 & E_{C}(-1)=\left\langle\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]\right\rangle
\end{array}
$$

We can choose these four basis vectors from the eigenspaces to be four eigenvectors that we hope form a linearly independent set. Create the matrix S by making these four vectors the columns,

$$
S=\left[\begin{array}{cccc}
-2 & -4 & -1 & 1 \\
-4 & -8 & -1 & 0 \\
0 & 1 & 0 & 1 \\
3 & 6 & 1 & 0
\end{array}\right]
$$

The matrix S row-reduces to the identity matrix, so we know S is nonsingular (Theorem NRRI), and the four eigenvectors are linearly independent. For each of these eigenvectors of C that is a column of S we can place the corresponding eigenvalue in the same column of a diagonal matrix D,

$$
D=\left[\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

Then the proof of Theorem DC says that $S^{-1} C S=D$, but you can go ahead and check the arithmetic if you don't believe it.
4. Suppose that λ is an eigenvalue of the $n \times n$ matrix A. Prove that $\lambda+\alpha$ is an eigenvalue of the matrix $A+\alpha I_{n}$. Do this "from scratch" (i.e. relying on definitions) and not by simply applying just one theorem from the book. (15 points)

Solution: Suppose that \mathbf{x} is an eigenvector of A for the eigenvalue λ. We will show that \mathbf{x} is an eigenvector of $A+\alpha I_{n}$ for the eigenvalue $\lambda+\alpha$. To wit,

$$
\begin{aligned}
\left(A+\alpha I_{n}\right) \mathbf{x} & =A \mathbf{x}+\alpha I_{n} \mathbf{x} & & \text { Theorem MMDAA } \\
& =\lambda \mathbf{x}+\alpha I_{n} \mathbf{x} & & \text { Definition EEM } \\
& =\lambda \mathbf{x}+\alpha \mathbf{x} & & \text { Theorem MMIM } \\
& =(\lambda+\alpha) \mathbf{x} & & \text { Property DSAC }
\end{aligned}
$$

So, by Definition EEM, $A+\alpha I_{n}$ has $\lambda+\alpha$ as an eigenvalue.
5. Suppose that A, B and C are square matrices of the same size, A is similar to B, and B is similar to C. Prove that A is similar to C. (15 points)

Solution: This is part 3 of Theorem SER.
6. Suppose that H is a Hermitian matrix and S is an orthogonal matrix. Prove that $S^{-1} H S$ is a Hermitian matrix. (15 points)

Solution: We appeal to the definition of a Hermitian matrix and compute,

$$
\begin{aligned}
\left(\overline{S^{-1} H S}\right)^{t} & =\overline{S^{-1}} \bar{H} \bar{S}^{t} & & \text { Theorem MMCC } \\
& =\bar{S}^{t} \bar{H}^{t}{\overline{S^{-1}}}^{t} & & \text { Theorem MMT } \\
& =\bar{S}^{t} H{\overline{S^{-1}}}^{t} & & \text { Definition HM } \\
& =S^{-1} H S & & \text { Theorem OMI }
\end{aligned}
$$

So by Definition HM, the matrix $S^{-1} H S$ is Hermitian.

