Show all of your work and explain your answers fully. There is a total of 100 possible points. If you use a calculator or Mathematica on a problem be sure to write down both the input and output.

1. For the linear transformation $S: \mathbb{C}^{2} \mapsto P_{2}$, compute the matrix representation relative to the bases B and C as given. In each case demonstrate the Fundamental Theorem of Matrix Representations by using the representation to compute $S\left(\left[\begin{array}{c}2 \\ -1\end{array}\right]\right) \cdot(35$ points $)$

$$
S\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=(-a+3 b)+(2 a+b) x+(a+3 b) x^{2}
$$

(a) $B=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}, \quad \mathrm{C}=\left\{1, x, x^{2}\right\}$

Solution: Apply S to each vector of B and form a vector representation relative to C,

$$
\begin{aligned}
& \rho_{C}\left(S\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)\right)=\rho_{C}\left(-1+2 x+x^{2}\right)=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right] \\
& \rho_{C}\left(S\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)\right)=\rho_{C}\left(3+x+3 x^{2}\right)=\left[\begin{array}{l}
3 \\
1 \\
3
\end{array}\right]
\end{aligned}
$$

Form a matrix with these vector representations as the columns, according to Definition MR,

$$
M_{B, C}^{S}=\left[\begin{array}{cc}
-1 & 3 \\
2 & 1 \\
1 & 3
\end{array}\right]
$$

Demonstrating Theorem FTMR, we see

$$
\begin{aligned}
S\left(\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right) & =\rho_{C}^{-1}\left(M_{B, C}^{S} \rho_{B}\left(\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right)\right) \\
& =\rho_{C}^{-1}\left(M_{B, C}^{S}\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right) \\
& =\rho_{C}^{-1}\left(\left[\begin{array}{c}
-5 \\
3 \\
-1
\end{array}\right]\right) \\
& =-5+3 x-x^{2}
\end{aligned}
$$

(b) $B=\left\{\left[\begin{array}{l}3 \\ 1\end{array}\right],\left[\begin{array}{l}5 \\ 2\end{array}\right]\right\} \quad \mathrm{C}=\left\{9+8 x-3 x^{2}, 3+3 x-x^{2},-2-2 x+x^{2}\right\}$

Solution: Apply S to each vector of B and form a vector representation relative to C,

$$
\begin{aligned}
\rho_{C}\left(S\left(\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right)\right) & =\rho_{C}\left(7 x+6 x^{2}\right) \\
& =\rho_{C}\left(-7\left(9+8 x-3 x^{2}\right)+33\left(3+3 x-x^{2}\right)+18\left(-2-2 x+x^{2}\right)\right) \\
& =\left[\begin{array}{l}
-7 \\
33 \\
18
\end{array}\right] \\
\rho_{C}\left(S\left(\left[\begin{array}{l}
5 \\
2
\end{array}\right]\right)\right) & =\rho_{C}\left(1+12 x+11 x^{2}\right) \\
& =\rho_{C}\left(-11\left(9+8 x-3 x^{2}\right)+56\left(3+3 x-x^{2}\right)+34\left(-2-2 x+x^{2}\right)\right) \\
& =\left[\begin{array}{c}
-11 \\
56 \\
34
\end{array}\right]
\end{aligned}
$$

Form a matrix with these vector representations as the columns, according to Definition MR,

$$
M_{B, C}^{S}=\left[\begin{array}{cc}
-7 & -11 \\
33 & 56 \\
18 & 34
\end{array}\right]
$$

Demonstrating Theorem FTMR, we see

$$
\begin{aligned}
S\left(\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right) & =\rho_{C}^{-1}\left(M_{B, C}^{S} \rho_{B}\left(\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right)\right) \\
& =\rho_{C}^{-1}\left(M_{B, C}^{S}\left[\begin{array}{c}
9 \\
-5
\end{array}\right]\right) \\
& =\rho_{C}^{-1}\left(\left[\begin{array}{c}
-8 \\
17 \\
-8
\end{array}\right]\right) \\
& =-8\left(9+8 x-3 x^{2}\right)+17\left(3+3 x-x^{2}\right)+(-8)\left(-2-2 x+x^{2}\right) \\
& =-5+3 x-x^{2}
\end{aligned}
$$

2. Consider the linear transformation $T: P_{2} \mapsto M_{22}$ defined below. Find the kernel of $T, \mathcal{K}(T)$. (15 points)

$$
T\left(a+b x+c x^{2}\right)=\left[\begin{array}{ll}
a+2 b+3 c & -a+b \\
3 a+b+4 c & 2 a+2 c
\end{array}\right]
$$

Solution: Begin with a matrix representation of T, relative to the nicest possible bases, say

$$
B=\left\{1, x, x^{2}\right\} \quad C=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

which yields

$$
M_{B, C}^{T}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 1 & 0 \\
3 & 1 & 4 \\
2 & 0 & 2
\end{array}\right]
$$

The kernel of T is isomorphic to the null space of $M_{B, C}^{T}$ via the "uncoordinatization" linear transformation ρ_{B}^{-1} (Theorem KNSI), so we first compute the null space of the matrix representation, row-reducing the matrix and using Theorem BNS,

$$
\mathcal{N}\left(M_{B, C}^{T}\right)=\left\langle\left\{\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]\right\}\right\rangle
$$

Applying ρ_{B}^{-1} to the lone basis vector creates the polynomial $-1-x+x^{2}$, which we can use as the basis vector for the kernel,

$$
\mathcal{K}(T)=\left\langle\left\{-1-x+x^{2}\right\}\right\rangle
$$

3. Find a basis for M_{22} so that the linear transformation R below has a diagonal matrix representation. (20 points)

$$
R: M_{22} \mapsto M_{22}, \quad R\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
-17 a+12 b-36 c+6 d & -6 a+4 b-12 c \\
7 a-5 b+15 c-3 d & a+2 c+2 d
\end{array}\right]
$$

Solution: Build a matrix representation of R. We can use any basis, so use the simplest possible, such as

$$
B=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

Then the matrix representation is

$$
A=M_{B, B}^{R}=\left[\begin{array}{cccc}
-17 & 12 & -36 & 6 \\
-6 & 4 & -12 & 0 \\
7 & -5 & 15 & -3 \\
1 & 0 & 2 & 2
\end{array}\right]
$$

and the eigenvalues of $M_{B, B}^{R}$ will be the eigenvalues of R. Similarly, we can extract the eigenvectors of R from the eigenvectors of $M_{B, B}^{R}$ (Theorem EER). Using techniques from Chapter E we find the eigenspaces,

$$
E_{A}(2)=\left\langle\left\{\left[\begin{array}{c}
6 \\
0 \\
-3 \\
1
\end{array}\right]\right\}\right\rangle \quad E_{A}(1)=\left\langle\left\{\left[\begin{array}{c}
-1 \\
-2 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right]\right\}\right\rangle \quad E_{A}(0)=\left\langle\left\{\left[\begin{array}{c}
-6 \\
-3 \\
2 \\
1
\end{array}\right]\right\}\right\rangle
$$

With algebraic multiplicities equal to geometric multiplicities, we can combine bases for each eigenspace to arrive at a basis for \mathbb{C}^{4} (Theorem DMFE). In turn, we can "un-coordinatize" each of these eigenvectors for A to arrive at an eigenvector of R. The four basis vectors above become the basis

$$
C=\left\{\left[\begin{array}{cc}
6 & 0 \\
-3 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & -2 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-2 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
-6 & -3 \\
2 & 1
\end{array}\right]\right\}
$$

Though not requested, the resulting diagonal matrix representation of R, relative to C, is then

$$
M_{C, C}^{R}=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

4. A linear transformation $T: V \mapsto V$ is called nilpotent if there is a positive integer d such that $T^{d}(\mathbf{v})=\mathbf{0}_{V}$ for all $\mathbf{v} \in V$. (The power d on T indicates repeated compositions.) Show that the linear transformation $T: P_{2} \mapsto P_{2}$ below is nilpotent (where P_{2} is the vector space of polynomials with degree at most 2). (15 points)

$$
T\left(a+b x+c^{2}\right)=(-14 a-18 b-4 c)+(9 a+12 b+2 c) x+(7 a+9 b+2 c) x^{2}
$$

Solution: You might be inclined to repeatedly compose T with itself, even though this gets tedious and errorprone very quickly. Instead, build a matrix representation and replace composition by matrix multiplication (Theorem MRCLT). Relative to the standard basis $B=\left\{1, x, x^{2}\right\}$ we easily obtain the representation,

$$
P=M_{B, B}^{T}=\left[\begin{array}{ccc}
-14 & -18 & -4 \\
9 & 12 & 2 \\
7 & 9 & 2
\end{array}\right]
$$

Successive powers yield,

$$
P^{2}=\left[\begin{array}{ccc}
6 & 0 & 12 \\
-4 & 0 & -8 \\
-3 & 0 & -6
\end{array}\right] \quad P^{3}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Since $P^{3}=\mathcal{O}, T^{3}(p(x))=0+0 x+0 x^{2}=\mathbf{0}$ for all $p(x) \in P_{2}$, and we see that T is nilpotent.
5. Prove that the only eigenvalue of a nilpotent linear transformation is zero. (See the previous problem for the definition of a nilpotent linear transformation.) (15 points)

Solution: Let \mathbf{x} be an eigenvector of a linear transformation T for the eigenvalue λ, and suppose that T is nilpotent with index p. Then

$$
\begin{aligned}
\mathbf{0}= & T^{p}(\mathbf{x}) \\
= & T^{p-1}(T(\mathbf{x})) \\
= & T^{p-1}(\lambda \mathbf{x}) \\
= & \lambda T^{p-1}(\mathbf{x}) \\
= & \lambda T^{p-2}(T(\mathbf{x})) \\
= & \lambda T^{p-2}(\lambda \mathbf{x}) \\
= & \lambda^{2} T^{p-2}(\mathbf{x}) \\
& \vdots \\
= & \lambda^{p} \mathbf{x}
\end{aligned}
$$

Because \mathbf{x} is an eigenvector, it is nonzero, and therefore Theorem SMEZV tells us that $\lambda^{p}=0$ and so $\lambda=0$.

