
Math 290 Name: Key Dr. Beezer
Quiz R Fall 2006

Show all of your work and explain your answers fully. There is a total of 100 possible points. If you use a calculator
or Mathematica on a problem be sure to write down both the input and output.

1. For the linear transformation S : C2 7→ P2, compute the matrix representation relative to the bases B and
C as given. In each case demonstrate the Fundamental Theorem of Matrix Representations by using the

representation to compute S

([
2
−1

])
. (35 points)

S

([
a
b

])
= (−a + 3b) + (2a + b) x + (a + 3b) x2

(a) B =
{[

1
0

]
,

[
0
1

]}
, C=

{
1, x, x2

}
Solution: Apply S to each vector of B and form a vector representation relative to C,

ρC

(
S

([
1
0

]))
= ρC

(
−1 + 2x + x2

)
=

−1
2
1


ρC

(
S

([
0
1

]))
= ρC

(
3 + x + 3x2

)
=

3
1
3


Form a matrix with these vector representations as the columns, according to Definition MR,

MS
B,C =

−1 3
2 1
1 3


Demonstrating Theorem FTMR, we see

S

([
2
−1

])
= ρ−1

C

(
MS

B,CρB

([
2
−1

]))
= ρ−1

C

(
MS

B,C

[
2
−1

])

= ρ−1
C

−5
3
−1


= −5 + 3x− x2



(b) B =
{[

3
1

]
,

[
5
2

]}
C=

{
9 + 8x− 3x2, 3 + 3x− x2, −2− 2x + x2

}
Solution: Apply S to each vector of B and form a vector representation relative to C,

ρC

(
S

([
3
1

]))
= ρC

(
7x + 6x2

)
= ρC

(
−7(9 + 8x− 3x2) + 33(3 + 3x− x2) + 18(−2− 2x + x2)

)
=

−7
33
18


ρC

(
S

([
5
2

]))
= ρC

(
1 + 12x + 11x2

)
= ρC

(
−11(9 + 8x− 3x2) + 56(3 + 3x− x2) + 34(−2− 2x + x2)

)
=

−11
56
34


Form a matrix with these vector representations as the columns, according to Definition MR,

MS
B,C =

−7 −11
33 56
18 34


Demonstrating Theorem FTMR, we see

S

([
2
−1

])
= ρ−1

C

(
MS

B,CρB

([
2
−1

]))
= ρ−1

C

(
MS

B,C

[
9
−5

])

= ρ−1
C

−8
17
−8


= −8(9 + 8x− 3x2) + 17(3 + 3x− x2) + (−8)(−2− 2x + x2)

= −5 + 3x− x2

2. Consider the linear transformation T : P2 7→M22 defined below. Find the kernel of T , K(T ). (15 points)

T
(
a + bx + cx2

)
=

[
a + 2b + 3c −a + b
3a + b + 4c 2a + 2c

]

Solution: Begin with a matrix representation of T , relative to the nicest possible bases, say

B =
{
1, x, x2

}
C =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
which yields

MT
B,C =


1 2 3
−1 1 0
3 1 4
2 0 2


2



The kernel of T is isomorphic to the null space of MT
B,C via the “uncoordinatization” linear transformation

ρ−1
B (Theorem KNSI), so we first compute the null space of the matrix representation, row-reducing the

matrix and using Theorem BNS,

N
(
MT

B,C

)
=

〈
−1
−1
1


〉

Applying ρ−1
B to the lone basis vector creates the polynomial −1 − x + x2, which we can use as the basis

vector for the kernel,

K(T ) =
〈{
−1− x + x2

}〉
3. Find a basis for M22 so that the linear transformation R below has a diagonal matrix representation. (20

points)

R : M22 7→M22, R

([
a b
c d

])
=

[
−17a + 12b− 36c + 6d −6a + 4b− 12c

7a− 5b + 15c− 3d a + 2c + 2d

]

Solution: Build a matrix representation of R. We can use any basis, so use the simplest possible, such as

B =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
Then the matrix representation is

A = MR
B,B =


−17 12 −36 6
−6 4 −12 0
7 −5 15 −3
1 0 2 2


and the eigenvalues of MR

B,B will be the eigenvalues of R. Similarly, we can extract the eigenvectors of R

from the eigenvectors of MR
B,B (Theorem EER). Using techniques from Chapter E we find the eigenspaces,

EA (2) =

〈


6
0
−3
1




〉
EA (1) =

〈

−1
−2
0
1

 ,


−2
0
1
0




〉
EA (0) =

〈

−6
−3
2
1




〉

With algebraic multiplicities equal to geometric multiplicities, we can combine bases for each eigenspace to
arrive at a basis for C4 (Theorem DMFE). In turn, we can “un-coordinatize” each of these eigenvectors for
A to arrive at an eigenvector of R. The four basis vectors above become the basis

C =
{[

6 0
−3 1

]
,

[
−1 −2
0 1

]
,

[
−2 0
1 0

]
,

[
−6 −3
2 1

]}
Though not requested, the resulting diagonal matrix representation of R, relative to C, is then

MR
C,C =


2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0



3



4. A linear transformation T : V 7→ V is called nilpotent if there is a positive integer d such that T d (v) = 0V

for all v ∈ V . (The power d on T indicates repeated compositions.) Show that the linear transformation
T : P2 7→ P2 below is nilpotent (where P2 is the vector space of polynomials with degree at most 2). (15
points)

T (a + bx + c2) = (−14a− 18b− 4c) + (9a + 12b + 2c) x + (7a + 9b + 2c) x2

Solution: You might be inclined to repeatedly compose T with itself, even though this gets tedious and error-
prone very quickly. Instead, build a matrix representation and replace composition by matrix multiplication
(Theorem MRCLT). Relative to the standard basis B =

{
1, x, x2

}
we easily obtain the representation,

P = MT
B,B =

−14 −18 −4
9 12 2
7 9 2


Successive powers yield,

P 2 =

 6 0 12
−4 0 −8
−3 0 −6

 P 3 =

0 0 0
0 0 0
0 0 0


Since P 3 = O, T 3(p(x)) = 0 + 0x + 0x2 = 0 for all p(x) ∈ P2, and we see that T is nilpotent.

5. Prove that the only eigenvalue of a nilpotent linear transformation is zero. (See the previous problem for
the definition of a nilpotent linear transformation.) (15 points)

Solution: Let x be an eigenvector of a linear transformation T for the eigenvalue λ, and suppose that T is
nilpotent with index p. Then

0 = T p (x)

= T p−1 (T (x))

= T p−1 (λx)

= λT p−1 (x)

= λT p−2 (T (x))

= λT p−2 (λx)

= λ2T p−2 (x)
...

= λpx

Because x is an eigenvector, it is nonzero, and therefore Theorem SMEZV tells us that λp = 0 and so λ = 0.

4


