
Math 290 Name: Key Dr. Beezer
Quiz R Fall 2007

Show all of your work and explain your answers fully. There is a total of 120 possible points. If you use a calculator
or Mathematica on a problem be sure to write down both the input and output.

1. P2 is the vector space of polynomials with degree at most 2, and M22 is the vector space of 2× 2 matrices.
Consider the linear transformation T : P2 7→M22 defined below. (45 points)

T
(
a + bx + cx2

)
=

[
−b + 3c a + 3b− 7c
a + b− c a + 2b− 4c

]
(a) Determine the matrix representation of T relative to the bases below.

B =
{
1, 1 + x, 1 + x + x2

}
C =

{[
1 0
0 0

]
,

[
1 1
0 0

]
,

[
1 1
1 0

]
,

[
1 1
1 1

]}

Solution: Applying Definition MR,

ρC (T (1)) = ρC

([
0 1
1 1

])
= ρC

(
(−1)

[
1 0
0 0

]
+ 0

[
1 1
0 0

]
+ 0

[
1 1
1 0

]
+ 1

[
1 1
1 1

])
=


−1
0
0
1



ρC (T (1 + x)) = ρC

([
−1 4
2 3

])
= ρC

(
(−5)

[
1 0
0 0

]
+ 2

[
1 1
0 0

]
+ (−1)

[
1 1
1 0

]
+ 3

[
1 1
1 1

])
=


−5
2
−1
3



ρC

(
T

(
1 + x + x2

))
= ρC

([
2 −3
1 −1

])
= ρC

(
5

[
1 0
0 0

]
+ (−4)

[
1 1
0 0

]
+ (2)

[
1 1
1 0

]
+ (−1)

[
1 1
1 1

])
=


5
−4
2
−1


So the resulting matrix representation is

MT
B,C =


−1 −5 5
0 2 −4
0 −1 2
1 3 −1


(b) Use your matrix representation from part (a) to determine the kernel of T , K(T ).

Solution: The statement of Theorem KNSI tells us that the kernel of the linear transormation is isomorphic
to the null space of the matrix representation, and the proof of this result tells us that an isomorphism is
ρB (or its inverse, depending on the direction). So we compute the null space of the matrix representation
with Theorem BNS,

−1 −5 5
0 2 −4
0 −1 2
1 3 −1

 RREF−−−−→


1 0 5
0 1 −2
0 0 0
0 0 0


So

N
(
MT

B,C

)
=

〈
−5

2
1


〉



To find the kernel of the linear transformation, we want to un-coordinatize the column vector that is the
basis element of the null space of the matrix representation, that is, we apply the inverse of ρB,

ρ−1
B

−5
2
1

 = −5 (1) + 2 (1 + x) + 1
(
1 + x + x2

)
= −2 + 3x + x2

K(T ) =
〈{
−2 + 3x + x2

}〉
(c) Use your matrix representation from part (a) to determine the range of T , R(T ).

Solution: The statement of Theorem RCSI tells us that the rane of the linear transormation is isomorphic
to the column space of the matrix representation, and the proof of this result tells us that an isomorphism is
ρC (or its inverse, depending on the direction). So we compute the column space of the matrix representation
with Theorem CSRST and Theorem BRS,−1 0 0 1

−5 2 −1 3
5 −4 2 −1

 RREF−−−−→

1 0 0 −1
0 1 −1

2 −1
0 0 0 0


So

N
(
MT

B,C

)
=

〈


1
0
0
−1

 ,


0
1
−1

2
−1




〉
=

〈


1
0
0
−1

 ,


0
2
−1
−2




〉

To find the kernel of the linear transformation, we want to un-coordinatize the column vector that is the
basis element of the null space of the matrix representation, that is, we apply the inverse of ρB,

ρ−1
C




1
0
0
−1


 = 1

[
1 0
0 0

]
+ 0

[
1 1
0 0

]
+ 0

[
1 1
1 0

]
+−1

[
1 1
1 1

]
=

[
0 −1
−1 −1

]

ρ−1
C




0
2
−1
−2


 = 0

[
1 0
0 0

]
+ 2

[
1 1
0 0

]
+ (−1)

[
1 1
1 0

]
+ (−2)

[
1 1
1 1

]
=

[
−1 −1
−3 −2

]

R(T ) =
〈{[

0 −1
−1 −1

]
,

[
−1 −1
−3 −2

]}〉

2. P2 is the vector space of polynomials with degree at most 2 Consider the linear transformation S : P2 7→ P2

defined below. (45 points)

S
(
a + bx + cx2

)
= (−2a + 2b + 2c) + (−3a + 3b + 2c) x + (−3a + 2b + 3c) x2

(a) Determine a basis for each eigenspace of S.

Solution: We need a matrix representation to work with, and we are free to choose any basis of P2 we
please. We’ll choose a basis that makes the formulation of the matrix representation almost transparent, like

2



B =
{
1, x, x2

}
. First, we form the matrix representation.

ρB (S (1)) = ρB

(
−2− 3x− 3x2

)
=

−2
−3
−3


ρB (S (x)) = ρB

(
2 + 3x + 2x2

)
=

2
3
2


ρB

(
S

(
x2

))
= ρB

(
2 + 2x + 3x2

)
=

2
2
3


So the resulting matrix representation is

M = MS
B,B =

−2 2 2
−3 3 2
−3 2 3


Now we compute the eigenvalues and eigenspaces of the matrix representation with the techniques of Chapter
E. The characteristic polynomial is pM (x) = −(x− 2)(x− 1)2 and the eigenspaces are

EM (2) =

〈
1

1
1


〉

EM (1) =

〈
2

3
0
1

 ,

2
3
1
0


〉

=

〈
2

0
3

 ,

2
3
0


〉

For eigenspaces of the linear transformation S we uncoordinatize the basis elements, viewed as vector repre-
sentations relative to B,

ES (2) =
〈{

1 + x + x2
}〉

ES (1) =
〈{

2 + 3x2, 2 + 3x
}〉

(b) Determine a basis, C, for P2 so that a matrix representation of S relative to C will be a diagonal
matrix. Explain carefully how you know that C is indeed a basis. Give the resulting matrix representation
of S relative to C.

Solution: From part (a) we can see that the algebraic multiplicitity of each eigenvalue is equal to the
geometric multiplicity. So by Theorem DMFE, the three column vectors that are basis elements for the matrix
representation of S would provide a basis of C3 that would diagonalize the matrix M . The uncoordinatized
versions will then be a basis (by Theorem CLI and Theorem CSS), and a matrix representation will be a
diagonal matrix with the eigenvalues on the diagonal (in the proper order). So we have

C =
{
1 + x + x2, 2 + 3x2, 2 + 3x

}
MS

C,C =

2 0 0
0 1 0
0 0 1



3. P2 is the vector space of polynomials with degree at most 2, and S22 is the vector space of 2× 2 symmetric
matrices. Consider the linear transformation Q : P2 7→ S22 defined below. (Hint: dim (S22) = 3.) (30 points)

Q
(
a + bx + cx2

)
=

[
2a− b 2a− b + c

2a− b + c a− b− c

]
3



(a) Determine that Q is invertible by examining properties of a matrix representation of Q.

Solution: We are free to use any bases we wish in the construction of the matrix representation, so choose
them to be as easy to work with as possible, say

B =
{
1, x, x2

}
C =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
The resulting matrix representation is

ρC (Q (1)) = ρC

([
2 2
2 1

])
= ρC

(
2

[
1 0
0 0

]
+ 2

[
0 1
1 0

]
+ 1

[
0 0
0 1

])
=

2
2
1


ρC (Q (x)) = ρC

([
−1 −1
−1 −1

])
= ρC

(
(−1)

[
1 0
0 0

]
+ (−1)

[
0 1
1 0

]
+ (−1)

[
0 0
0 1

])
=

−1
−1
−1


ρC

(
Q

(
x2

))
= ρC

([
0 1
1 −1

])
= ρC

(
0

[
1 0
0 0

]
+ 1

[
0 1
1 0

]
+ (−1)

[
0 0
0 1

])
=

 0
1
−1


MQ

B,C =

2 −1 0
2 −1 1
1 −1 −1


We’ll start our analysis with the null space of this matrix representation,2 −1 0

2 −1 1
1 −1 −1

 RREF−−−−→

 1 0 0
0 1 0
0 0 1


So we see that the matrix representation is nonsingular (Theorem NMRRI). By Theorem NME9 the null
space is trivial and the column space is C3. Then Theorem KNSI tells us the kernel of Q is trivial, and so
by Theorem KILT, Q is injective. And Theorem RCSI tells us that the range of Q is all of S22 and so by
Theorem RSLT, Q is surjective. Finally, by Theorem ILTIS, Q is invertible.

(b) Use a matrix representation to construct a “formula” for the inverse of Q, Q−1.

Solution: Basically, the inverse linear transformation has a matrix representation that is the matrix inverse
of the matrix representation. Here’s how we determine a formula for Q−1 : S22 7→ P2,

Q−1

([
a b
b c

])
= ρ−1

B

(
MQ−1

C,B ρC

([
a b
b c

]))
Theorem FTMR

= ρ−1
B

((
MQ

B,C

)−1
ρC

([
a b
b c

]))
Theorem IMR

= ρ−1
B

(
MQ

B,C

)−1

a
b
c

 Definition VR

= ρ−1
B

 2 −1 −1
3 −2 −2
−1 1 0

a
b
c

 Theorem CINM

= ρ−1
B

 2a− b− c
3a− 2b− 2c
−a + b

 Definition MVP

= (2a− b− c) + (3a− 2b− 2c) x + (−a + b) x2 Definition VR
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