Show all of your work and explain your answers fully. There is a total of 100 possible points. If you use a calculator or Mathematica on a problem be sure to write down both the input and output.

1. Find all solutions to the system of equations below, writing the solutions as a set employing the vector form of a solution. (10 points)

$$
\begin{array}{r}
-2 x_{1}-6 x_{2}+x_{3}+4 x_{4}+9 x_{5}=7 \\
3 x_{1}+9 x_{2}+5 x_{3}+7 x_{4}-7 x_{5}=9
\end{array}
$$

Solution: Theorem VFSLS references the row-reduced version of the augmented matrix of the system. So we form the augmented matrix and find a row-equivalent matrix in reduced row-echelon form,

$$
\left[\begin{array}{cccccc}
-2 & -6 & 1 & 4 & 9 & 7 \\
3 & 9 & 5 & 7 & -7 & 9
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccccc}
1 & 3 & 0 & -1 & -4 & -2 \\
0 & 0 & 1 & 2 & 1 & 3
\end{array}\right]
$$

The non-pivot columns have indices $F=\{2,4,5\}$. Based on this alone, we know a typical solution vector looks like

$$
\mathbf{x}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Applying the theorem, or unraveling the equations represented by each row of the augmented matrix, we can use the vector form of a solution vector in a set construction to achieve the solution set,

$$
\left\{\left.\left[\begin{array}{c}
-2 \\
0 \\
3 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
4 \\
0 \\
-1 \\
0 \\
1
\end{array}\right] \right\rvert\, x_{2}, x_{4}, x_{5} \in \mathbb{C}\right\}
$$

2. For the matrix A below, find a linearly independent set P such that $\langle P\rangle=\mathcal{N}(A)$, i.e. the span of P equals the null space of A. (15 points)

$$
A=\left[\begin{array}{ccccc}
-2 & -4 & -4 & 10 & -4 \\
-4 & -1 & 5 & 1 & 24 \\
2 & -1 & -4 & 1 & -15
\end{array}\right]
$$

Solution: Theorem BNS provides the necesary vectors. First, we need to row-reduce the matrix to find a row-equivalent matrix in reduced row-echelon form,

$$
\left[\begin{array}{ccccc}
-2 & -4 & -4 & 10 & -4 \\
-4 & -1 & 5 & 1 & 24 \\
2 & -1 & -4 & 1 & -15
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
{[1} & 0 & 0 & -3 & -2 \\
0 & \boxed{1} & 0 & 1 & -1 \\
0 & 0 & 1 & -2 & 3
\end{array}\right]
$$

The non-pivot columns have indices $F=\{4,5\}$, and with an application of Theorem BNS, or consideration of solutions to the homogeneous system, $\mathcal{L S}(A, \mathbf{0})$, we find the linear independent set

$$
P=\left\{\left[\begin{array}{c}
3 \\
-1 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
1 \\
-3 \\
0 \\
1
\end{array}\right]\right\}
$$

whose span will be the null space of A.
3. Given the set S below, find a linearly independent set T such that $\langle T\rangle=\langle S\rangle$. (15 points)

$$
S=\left\{\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
5 \\
-4 \\
1
\end{array}\right],\left[\begin{array}{c}
-4 \\
11 \\
-10 \\
3
\end{array}\right],\left[\begin{array}{c}
1 \\
-4 \\
6 \\
-3
\end{array}\right],\left[\begin{array}{c}
-1 \\
7 \\
-13 \\
7
\end{array}\right]\right\}
$$

Solution: Theorem BS provides the tools for locating such a set. Let C be the matrix whose columns are the vectors in S, and then row-reduce,

$$
C=\left[\begin{array}{ccccc}
1 & -2 & -4 & 1 & -1 \\
-2 & 5 & 11 & -4 & 7 \\
1 & -4 & -10 & 6 & -13 \\
0 & 1 & 3 & -3 & 7
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccccc}
\hline 1 & 0 & 2 & 0 & 3 \\
0 & \boxed{1} & 3 & 0 & 1 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The pivot columns are $D=\{1,2,4\}$ so we can form the set T as simply the first three vectors of S, and know from Theorem BS that T is linearly independent and $\langle T\rangle=\langle S\rangle$,

$$
T=\left\{\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
5 \\
-4 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-4 \\
6 \\
-3
\end{array}\right]\right\}
$$

4. For each set below, determine if the set is linearly independent or linearly dependent. (15 points)
(a) $T=\left\{\left[\begin{array}{l}5 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 3 \\ 5 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 4 \\ 7 \\ 2\end{array}\right],\left[\begin{array}{c}6 \\ -2 \\ 2 \\ -2\end{array}\right]\right\}$

Solution: With 4 vectors from \mathbb{C}^{4} we can make these vectors the columns of a matrix, B, and row-reduce the result,

$$
B=\left[\begin{array}{cccc}
5 & -2 & -1 & 6 \\
1 & 3 & 4 & -2 \\
1 & 5 & 7 & 2 \\
1 & 1 & 2 & -2
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & \boxed{1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Since the row-reduced version of B is the 4×4 identity matrix, I_{4} (Definition IM), we know by Theorem NMRI that the columns of B are linearly independent. Thus T is a linearly independent set.
(b) $R=\left\{\left[\begin{array}{c}-2 \\ -1 \\ 4\end{array}\right],\left[\begin{array}{l}0 \\ 4 \\ 5\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 8\end{array}\right],\left[\begin{array}{l}7 \\ 5 \\ 7\end{array}\right],\left[\begin{array}{c}-2 \\ 6 \\ 1\end{array}\right]\right\}$

Solution: This is a set of $n=5$ vectors from \mathbb{C}^{3} and $n=5>3=m$, so by Theorem MVSLD the set R is linearly dependent.
5. Suppose that $\alpha \in \mathbb{C}$ is a scalar and $\mathbf{x} \in \mathbb{C}^{m}$ is a vector. Prove that $\overline{\alpha \mathbf{x}}=\bar{\alpha} \overline{\mathbf{x}}$ with a careful proof that uses the definition of vector equality (Definition CVE). (15 points)

Solution: For $1 \leq i \leq m$,

$$
\begin{aligned}
{[\overline{\alpha \mathbf{x}}]_{i} } & =\overline{[\alpha \mathbf{x}]_{i}} & & \text { Definition CCCV } \\
& =\overline{\alpha[\mathbf{x}]_{i}} & & \text { Definition CVSM } \\
& =\bar{\alpha} \overline{[\mathbf{x}]_{i}} & & \text { Definition CCRM } \\
& =\bar{\alpha}[\overline{\mathbf{x}}]_{i} & & \text { Definition CCCV }
\end{aligned}
$$

Then by Definition CVE we have $\overline{\alpha \mathbf{x}}=\bar{\alpha} \overline{\mathbf{x}}$.
6. Suppose that $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$ are two vectors. Use the definition of linear independence to prove that $S=\{\mathbf{u}, \mathbf{v}\}$ is a linearly dependent set if and only if one of the two vectors is a scalar multiple of the other. In other words, do not simply apply Theorem DLDS, the theorem that says linear dependence is equivalent to one vector being a linear combination of the others. (15 points)

Solution: (\Rightarrow) If S is linearly dependent, then there are scalars α and β, not both zero, such that $\alpha \mathbf{u}+\beta \mathbf{v}=\mathbf{0}$. Suppose that $\alpha \neq 0$, the proof proceeds similarly if $\beta \neq 0$. Now,

$$
\begin{aligned}
\mathbf{u} & =1 \mathbf{u} & & \text { Property OC } \\
& =\left(\frac{1}{\alpha} \alpha\right) \mathbf{u} & & \text { Property MICN } \\
& =\frac{1}{\alpha}(\alpha \mathbf{u}) & & \text { Property SMAC } \\
& =\frac{1}{\alpha}(\alpha \mathbf{u}+\mathbf{0}) & & \text { Property ZC } \\
& =\frac{1}{\alpha}(\alpha \mathbf{u}+\beta \mathbf{v}-\beta \mathbf{v}) & & \text { Property AIC } \\
& =\frac{1}{\alpha}(\mathbf{0}-\beta \mathbf{v}) & & \text { Definition LICV } \\
& =\frac{1}{\alpha}(-\beta \mathbf{v}) & & \text { Property ZC } \\
& =\frac{-\beta}{\alpha} \mathbf{v} & & \text { Property SMAC }
\end{aligned}
$$

which shows that \mathbf{u} is a scalar multiple of \mathbf{v}.
(\Leftarrow) Suppose now that \mathbf{u} is a scalar multiple of \mathbf{v}. More precisely, suppose there is a scalar γ such that $\mathbf{u}=\gamma \mathbf{v}$. Then

$$
\begin{aligned}
(-1) \mathbf{u}+\gamma \mathbf{v} & =(-1) \mathbf{u}+\mathbf{u} & & \\
& =(-1) \mathbf{u}+(1) \mathbf{u} & & \text { Property OC } \\
& =((-1)+1) \mathbf{u} & & \text { Property DSAC } \\
& =0 \mathbf{u} & & \text { Property AICN } \\
& =\mathbf{0} & & \text { Definition CVSM }
\end{aligned}
$$

This is a relation of linear of linear dependence on S (Definition RLDCV), which is nontrivial since one of the scalars is -1 . Therefore S is linearly dependent by Definition LICV.

