Name: Key

Show *all* of your work and *explain* your answers fully. There is a total of 100 possible points. If you use a calculator or Mathematica on a problem be sure to write down both the input and output.

1. Find all solutions to the system of equations below, writing the solutions as a set employing the vector form of a solution. (10 points)

 $-2x_1 - 6x_2 + x_3 + 4x_4 + 9x_5 = 7$ $3x_1 + 9x_2 + 5x_3 + 7x_4 - 7x_5 = 9$

Solution: Theorem VFSLS references the row-reduced version of the augmented matrix of the system. So we form the augmented matrix and find a row-equivalent matrix in reduced row-echelon form,

$\left[-2\right]$	-6	1	4	9	7]	RREF	$\left[1 \right]$	3	0	-1	-4	-2
3	9	5	7	-7	9		0	0	1	2	1	3

The non-pivot columns have indices $F = \{2, 4, 5\}$. Based on this alone, we know a typical solution vector looks like

	0		1		0		0	
$\mathbf{x} =$		$+x_{2}$		$+x_{4}$		$+x_{5}$		
	0		0		1		0	
	0		0		0		1	

Applying the theorem, or unraveling the equations represented by each row of the augmented matrix, we can use the vector form of a solution vector in a set construction to achieve the solution set,

ſ	$\lceil -2 \rceil$		[-3]		[1]		$\begin{bmatrix} 4 \end{bmatrix}$	
	0		1		0		0	
ł	3	$+x_{2}$	0	$+x_{4}$	-2	$+ x_5$	-1	$ x_2, x_4, x_5 \in \mathbb{C}$
	0		0		1		0	
l	0		0		0		1	J

2. For the matrix A below, find a linearly independent set P such that $\langle P \rangle = \mathcal{N}(A)$, i.e. the span of P equals the null space of A. (15 points)

$$A = \begin{bmatrix} -2 & -4 & -4 & 10 & -4 \\ -4 & -1 & 5 & 1 & 24 \\ 2 & -1 & -4 & 1 & -15 \end{bmatrix}$$

Solution: Theorem BNS provides the necessary vectors. First, we need to row-reduce the matrix to find a row-equivalent matrix in reduced row-echelon form,

$$\begin{bmatrix} -2 & -4 & -4 & 10 & -4 \\ -4 & -1 & 5 & 1 & 24 \\ 2 & -1 & -4 & 1 & -15 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 0 & 0 & -3 & -2 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & -2 & 3 \end{bmatrix}$$

The non-pivot columns have indices $F = \{4, 5\}$, and with an application of Theorem BNS, or consideration of solutions to the homogeneous system, $\mathcal{LS}(A, \mathbf{0})$, we find the linear independent set

$$P = \left\{ \begin{bmatrix} 3 \\ -1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -3 \\ 0 \\ 1 \end{bmatrix} \right\}$$

whose span will be the null space of A.

3. Given the set S below, find a linearly independent set T such that $\langle T \rangle = \langle S \rangle$. (15 points)

$$S = \left\{ \begin{bmatrix} 1\\-2\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\5\\-4\\1 \end{bmatrix}, \begin{bmatrix} -4\\11\\-10\\3 \end{bmatrix}, \begin{bmatrix} 1\\-4\\6\\-3 \end{bmatrix}, \begin{bmatrix} -1\\7\\-13\\7 \end{bmatrix} \right\}$$

Solution: Theorem BS provides the tools for locating such a set. Let C be the matrix whose columns are the vectors in S, and then row-reduce,

$$C = \begin{bmatrix} 1 & -2 & -4 & 1 & -1 \\ -2 & 5 & 11 & -4 & 7 \\ 1 & -4 & -10 & 6 & -13 \\ 0 & 1 & 3 & -3 & 7 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 0 & 2 & 0 & 3 \\ 0 & 1 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The pivot columns are $D = \{1, 2, 4\}$ so we can form the set T as simply the first three vectors of S, and know from Theorem BS that T is linearly independent and $\langle T \rangle = \langle S \rangle$,

$$T = \left\{ \begin{bmatrix} 1\\-2\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\5\\-4\\1 \end{bmatrix}, \begin{bmatrix} 1\\-4\\6\\-3 \end{bmatrix} \right\}$$

4. For each set below, determine if the set is linearly independent or linearly dependent. (15 points)

(a)
$$T = \left\{ \begin{bmatrix} 5\\1\\1\\1\end{bmatrix}, \begin{bmatrix} -2\\3\\5\\1\end{bmatrix}, \begin{bmatrix} -1\\4\\7\\2\end{bmatrix}, \begin{bmatrix} 6\\-2\\2\\-2\end{bmatrix} \right\}$$

Solution: With 4 vectors from \mathbb{C}^4 we can make these vectors the columns of a matrix, B, and row-reduce the result,

$$B = \begin{bmatrix} 5 & -2 & -1 & 6\\ 1 & 3 & 4 & -2\\ 1 & 5 & 7 & 2\\ 1 & 1 & 2 & -2 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since the row-reduced version of B is the 4×4 identity matrix, I_4 (Definition IM), we know by Theorem NMRI that the columns of B are linearly independent. Thus T is a linearly independent set.

(b)
$$R = \left\{ \begin{bmatrix} -2\\-1\\4 \end{bmatrix}, \begin{bmatrix} 0\\4\\5 \end{bmatrix}, \begin{bmatrix} 2\\-2\\8 \end{bmatrix}, \begin{bmatrix} 7\\5\\7 \end{bmatrix}, \begin{bmatrix} -2\\6\\1 \end{bmatrix} \right\}$$

Solution: This is a set of n = 5 vectors from \mathbb{C}^3 and n = 5 > 3 = m, so by Theorem MVSLD the set R is linearly dependent.

5. Suppose that $\alpha \in \mathbb{C}$ is a scalar and $\mathbf{x} \in \mathbb{C}^m$ is a vector. Prove that $\overline{\alpha \mathbf{x}} = \overline{\alpha} \, \overline{\mathbf{x}}$ with a careful proof that uses the definition of vector equality (Definition CVE). (15 points)

Solution: For $1 \le i \le m$,

$[\overline{\alpha \mathbf{x}}]_i = \overline{[\alpha \mathbf{x}]_i}$	Definition CCCV
$=\overline{\alpha\left[\mathbf{x} ight]_{i}}$	Definition CVSM
$=\overline{\alpha}\overline{[\mathbf{x}]_i}$	Definition CCRM
$=\overline{\alpha} \ \left[\overline{\mathbf{x}}\right]_i$	Definition CCCV

Then by Definition CVE we have $\overline{\alpha \mathbf{x}} = \overline{\alpha} \, \overline{\mathbf{x}}$.

6. Suppose that $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ are two vectors. Use the definition of linear independence to prove that $S = {\mathbf{u}, \mathbf{v}}$ is a linearly dependent set if and only if one of the two vectors is a scalar multiple of the other. In other words, do not simply apply Theorem DLDS, the theorem that says linear dependence is equivalent to one vector being a linear combination of the others. (15 points)

Solution: (\Rightarrow) If S is linearly dependent, then there are scalars α and β , not both zero, such that $\alpha \mathbf{u} + \beta \mathbf{v} = \mathbf{0}$. Suppose that $\alpha \neq 0$, the proof proceeds similarly if $\beta \neq 0$. Now,

$\mathbf{u} = 1\mathbf{u}$	Property OC
$=\left(rac{1}{lpha}lpha ight)\mathbf{u}$	Property MICN
$=rac{1}{lpha}\left(lpha\mathbf{u} ight)$	Property SMAC
$=rac{1}{lpha}\left(lpha\mathbf{u}+0 ight)$	Property ZC
$=\frac{1}{\alpha}\left(\alpha\mathbf{u}+\beta\mathbf{v}-\beta\mathbf{v}\right)$	Property AIC
$=rac{1}{lpha}\left(0-eta\mathbf{v} ight)$	Definition LICV
$=rac{1}{lpha}\left(-eta\mathbf{v} ight)$	Property ZC
$=rac{-eta}{lpha}\mathbf{v}$	Property SMAC

which shows that \mathbf{u} is a scalar multiple of \mathbf{v} .

(\Leftarrow) Suppose now that **u** is a scalar multiple of **v**. More precisely, suppose there is a scalar γ such that $\mathbf{u} = \gamma \mathbf{v}$. Then

$(-1)\mathbf{u} + \gamma \mathbf{v} = (-1)\mathbf{u} + \mathbf{u}$	
$= (-1)\mathbf{u} + (1)\mathbf{u}$	Property OC
$= \left((-1) + 1 \right) \mathbf{u}$	Property DSAC
$= 0\mathbf{u}$	Property AICN
= 0	Definition CVSM

This is a relation of linear of linear dependence on S (Definition RLDCV), which is nontrivial since one of the scalars is -1. Therefore S is linearly dependent by Definition LICV.