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Here we seek to discover how familiar properties of finite vector spaces
are altered when the vector spaces are considered in the infinite case.

1 Cardinality

To best understand transfinite vector spaces, we begin with a definition.

Definition 1 (Cardinality of a Set) The cardinality of a set, finite or in-
finite, is the number, i, of vectors in the set {u1, u2, u3...ui}.

It is important to distinguish cardinality from dimension, which is defined
as the number of elements in a spanning set. Sets with finite cardinality are
discussed less often than sets with transfinite cardinality. Examples of such
sets are the set spanned by the zero vector, 〈{~0}〉, which has card=1, and
the set of single-digit natural numbers, N , {1, 2, 3, 4, 5, 6, 7, 8, 9}, which has
card=9.

Sets with transfinite cardinality can be said to have countably infinite
cardinality or uncountably infinite cardinality. The cardinality of the set v
is said to be countably infinite if there exists an injection between v and the
set of natural numbers. It is represented by the symbol ℵ0, read ”aleph.”
An uncountably infinite set has a greater cardinality than that of the set of
integers; there exists no injection between such a set and the set of integers.
The real numbers are an example of such a set. Sets with uncountably infinite
cardinality will not prove relavent; this discussion will concern only countably
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infinite sets. Now we introduce a theorem to which there has already been
allusion.

Theorem 1 (Equal Cardinality) Two sets, A and B have equal cardinal-
ity if there exists and injection between them. Then cardA=cardB.

2 Infinite Systems of Linear Equations and

Infinite Matrices

We now consider infinite systems of equations, which will be represented by
matricies of infinite dimension. Such equations take the form

α11x1 + α12x2 + α13x3 + · · · = b1
α21x1 + α22x2 + α23x3 + · · · = b2
α31x1 + α32x2 + α33x3 + · · · = b3
...
αm1x1 + αm2x2 + αm3x3 + · · · = bm

or

α11x1 + α12x2 + α13x3 + · · · = b1
α21x1 + α22x2 + α23x3 + · · · = b2
α31x1 + α32x2 + α33x3 + · · · = b3
...

Where the former is a m x ℵ0 matrix and the latter is a ℵ0 x ℵ0 matrix. (not-
ing here that a matrix with an infinite number of rows and a finite number
of columns would have full rank when j ≥ i.

Both matrix addition and matrix scalar multiplication behave the same
way in both finite and infinite space. That is, [A]ij + [B]ij = [A + B]ij and
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α[A]ij = [αA]ij. In addition, matrix multiplication has the same definition,∑n
k=1[A]ik[B]kj with the added condition that this infinite series converges

when n is ∞. Therefore, in Mmℵ and Mℵℵ matrix multiplication is not
closed because the infinte series may not converge.

The infinite m x ℵ matirx can be row reduced with a finite number of
row operations, preserving the solution set between the original matrix and
the matrix in reduced row echelon form. However, there is no guarantee that
the ℵ x ℵ matrix can be as well. It may take infinitely many row operations,
in which case it is unlikely that the solution set from the original matrix is
preserved. An infinite number of terms operating on an infinite series, with
possible convergence issues, does not always yeild a solution set, especially a
correct one.

3 Existence of Matrix Products

We know well that even for n×n square matrices A and B, AB does not, in
general, equal BA. However, when n is finite, both products will exist. When
n is infinite, one product may exist while the other does not.

Consider the infinite ℵ0 ×ℵ0 matrix A in which, for every j > 1, Aij = 0
a1j 0 0 0 · · ·
a2j 0 0 0 · · ·
a3j 0 0 0 · · ·
...

...
...

...


and an arbitrary infinite ℵ0 × ℵ0 matrix, B.

Then [AB]ij =
∑∞

k=1 aikbkj = ai1b1j which must exist for any ai1 and
b1j. Therefore, AB exists. However, [BA]ij =

∑∞
k=1 bikakj although when

j > 1, [BA]ij = 0 when j = 1, [BA]ij =
∑∞

k=1 bikak1 If this sum diverges,
the product of BA does not exist.

4 Distributivity of Infinite Matrices

The distributive property of finite matrices looks familiar:
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A(B + C) = AB + AC or (B + C)A = BA+ CA

This property holds for infinite matrices, provided that AB and AC exist.
Then A(B + C) exists and is equal to AB + AC. However, A(B + C) may
exist when AB and AC do not. For example, let

∑∞
i=1 di be a convergent

sum. Let B be a matrix such that bij = di + 1 and let C be a matrix such
that cij = di − 1. Futhermore, let A be a matrix such that every aij = 1.

B + C = [b]ij + [c]ij = [b+ c]ij = [di + 1 + di − 1]ij = [2di]ij

A(B + C) =
∑∞

k=1 aik[b+ c]kj =
∑∞

k=1 aik[2dk]kj =
∑∞

k=1[1][2dk]kj

which converges for each value of j because
∑∞

i=1 di converges.

However, A(B) =
∑∞

k=1 aikbkj =
∑∞

k=1[1]bkj =
∑∞

k=1 dk + 1, a sum which
diverges by the nth-term test.

Similarly, A(C) =
∑∞

k=1 aikckj =
∑∞

k=1[1]ckj =
∑∞

k=1 di − 1 which the
nth-term test also shows to be a divergent sum. Therefore, we have infinite
matrices A,B and C such that A(B + C) 6= A(B) + A(C).

Clearly, problems with set closure arise when the distributivity and even
existence of a product cannot be guaranteed. Now that it is understood
that closure is reliant on convergence of matrix products, we seek matrices
for which these products will always converge. Diagonal matrices, row-finite
matrices and column-finite matrices are closed under the sum and product
(i.e. every sum or product of diagonal, row-finite or column-finite matrices
will yield a diagonal, row-finite, or column-finite matrix.)

5 Hamel Bases

As in finite matrix theory, we are concerned about the relation of the vectors
that form the columns of such a matrix. Now we consider in what case such
vectors can be said to form a basis.

Definition 2 (Hamel Basis) A Hamel Basis is a linear nontopological al-
gebraic basis which is a maximal linearly independent subset of a vector space.
It has a unique dimension, called Hamel Dimension.
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It is noted that Hamel Bases exist for both finite and infinite vector spaces.
In the infinite case, some of the properties of finite bases remain. Any vector
in the vector space, v, can be written as a linear combination of vectors of the
Hamel Basis. This representation is unique in the finite and infinite cases.

Theorem 2 (Criteria for a Hamel Basis) Either of the following is a nec-
essary and sufficient condition for b={b1, b2, b3 . . . bn} for a linear space, V n,
b ∈ V n.
(a) The subset b is linearly independent and every vector in V can be written
as a linear combination of vectors in b.
(b) Every vector in V n is a unique linear combination of vectors in b.

Recall, in the finite vector space Cn, we say that {c1, c2, c3 . . . cn} is a basis if
either:
(a) It is linearly independent.
or
(b) Any vector in u ∈ Cn can be written as a linear combination of vectors
in c. (c spans Cn)
However, Goldilocks is not so bold in infinite vector space, and these prop-
erties do not hold. We will show this by counter example.

Let n be a transfinite cardinal, and V n the set of polynomial functions
with real coefficients. Then V has Hamel Dimension ℵ0. Consider:

(a) The subset {x2, x4, x6, x8...} which is easily shown to be linearly in-
dependent and has cardinality ℵ0 but clearly does not span V , and therefore
is not a basis.

(b) The subset {1, x, x2, x3, x3 + x4, x4, x5 . . . xp . . .} all terms having the
form xp, p = 5, 6, 7 . . ., which has cardinality ℵ0 and spans V . However, it is
not linearly independent, so it is not a basis for V .

Therefore, even if a set has the correct cardinality, linear independence
does not imply spanning, nor spanning imply linear independence in infinite
space. Each must be checked seperately to verify a Hamel basis.

Theorem 3 (Linear Dependence in Space with Transfinite Dimension)
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Let U be a linear space with transfinite Hamel Dimension, ℵ0. Then every
subset u ∈ U with cardinality ℵ0 + 1 or more is linearly dependent in U .

Proof: This result follows from the ability to extend a linearly inde-
pendent subset, S in the vector space V . If a vector, w /∈< {S} >, then
S ∪ w = S′, a linearly independent set. A Hamel basis can be created by
adding each element not included in < {S} > until no such elements remain.
Because V is a transfinite space, the cardinality of the Hamel basis is ℵ0. Be-
cause S′ is a Hamel basis, it spans V and is maximally linearly independent,
and therefore no vector in V cannot be written as a linear combination of
vectors in S. Therefore, any set with cardinality ℵ0 + 1 or more is linearly
dependent in V .

This result at first seems transparent: a maximal linearly indepenent set
in U has cardinality equal to the dimension of U . However, ℵ0 and ℵ0 +1 are
both countably infinite, giving us one set with countably infinite cardinality
and linear independence, and another with contably infinite cardinality and
linear dependence. This clarifies why spanning cannot imply linear indepen-
dence, and gives meaning to infinite cardinality.

6 An Example of an Infinite Vector Space:

Hilbert Space

Definition 3 (Inner Product Space) Let V be a vector space over C. An
inner product on V is defined 〈, 〉 : V x V −→ C and has the following
properties:
(a) For all ~v ∈ V, 〈~v,~v〉 ≥ 0 and 〈~v,~v〉 = 0 if and only if ~v = 0. (Postive
Definiteness)
(b) 〈~u,~v〉 = ¯〈~v,~u〉 (Hermitian symmetry)
(c) 〈r~u+ s~v, w〉 = r〈~u, ~w〉+ s〈~v, ~w〉 (Linearity in the first coordinate)

Consider the infinite system with m equations and ℵ0 variables and de-
fine:
‖~αi‖ =

∑+∞
j=1 |αij|2

where ~α1i = ( ~α1i, ~α2i, ~α3i, . . .).
When this series converges, ‖~αi‖ =∞, ~αi has a finite norm.
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Definition 4 (Hilbert Space) The set of all ~αi with a finite norm make
up an inner product space, Hilbert space, `2.

Thus, Hilbert space is a carefully defined linear space with cardinality ℵ0.

Theorem 4 (Linear Dependence in Hilbert Space) The set of vectors
~αi ∈ `2 is linearly dependent if and only if the inner product of any two
vectors in the set, or of a vector with itself, is zero.

Finally, to conclude, we offer a theorem that guarantees the existence of
that which we always seek when presented with an initial system of equations:
a solution. Recalling the initial system of equations,

Theorem 5 (Existence of a solution in Hilbert Space) If ~αi, i = 1, 2, 3, ...m ∈
`2 is a linearly independent set, there exists a unique linear combination of
~αi which equals ~b. [α1|α2|α3| · · · |αm]~x = ~b.

This, again, does not sound so impressive until we realize that ~x has di-
mension ℵ0, that is, it represents a countably infinite number of scalars mul-
tiplying a countably infinite number of vectors to create a linear combination
equalling a vector, ~b from Cm, with only a few restrictions on convergence
and inner products.
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