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1 Introduction

The majority of genes within a cell encode for metabolic functions to create products.
These functions can be thought of as pathways constituting of enzymes and metabo-
lites. The metabolites are the intermediate substances used in making the product.
Within a cell, amounts of different products from separate reactions come together
to form the final product. The creation of a product can be thought of as a system of
linear equations. Each equation in the system relies upon the moles (concentration)
of each intermediate metabolite and reaction fluxes (amount applied per unit time.)
Since the concentrations of enzymes help power the rate at which the creation of the
product occurs, an enzyme basically controls each separate reaction in the system.
Metabolic control analysis is the study of how these two variables are distributed
among the different enzymes that control the system and most importantly how this
distribution changes in response to perturbation. A perturbation can be described as
a non-random disturbance such as a change in the concentration of a metabolite, a
hormone secretion, or a cell proliferation (Cascante 244). Mathematical theories for
analyzing reaction rate and metabolite concentration can be found in linear algebra.
The ideas of several theorists over the 20th century, Reder, Cascante, Fell and Sauro,
and their precursors, have come together to make one general method. Certain as-
sumptions need be made for such methods:
1) All reactions in a metabolic system are interconnected.
2) A metabolic system can be studied at a steady state such that all concentrations
of metabolites remain constant over time.
3) Metabolites in a system are distributed equally over the enzymes that act on them.
4) Rates of reaction are directly proportional to enzyme concentration.
5) Enzymes are parameters, not variables.
6) Amounts of certain substances do not affect a metabolic systems steady state.
(Fell 314)

2 Technique for Analyzing Metabolic Systems

In metabolic control analysis, a method has been developed for analyzing metabolic
reactions to perturbations.

Reder developed an analyzing technique that relies simply on the stoichiometric
relationships, describing how metabolites in the system of reactions combine to make
products. Reder justifies relying only on this structural component on metabolic
systems by saying it would be incoherent to work with detailed kinetic expressions
before analyzing the structure of the model and its consequences (Reder 3). Defining
environmental perturbations (temperature surrounding system, air flow, etc.) at the
same time as analyzing the metabolite combinations would be overly intricate and
result in disappointment. So the following is a way to represent chemical pathways as
a system of equations, where the only system variables are metabolite concentrations,
which are controlled by the rates of each reaction in the system, which are controlled
by enzymes.

The rate at which a product of a system is created:

∆[Xi]

∆t
= ΣjSijvj

2



Where Sij is the number of moles metabolite Xi in reaction j and vj is the rate of
reaction j.

2.1 Stoichiometric Matrix

We now make a stoichiometric matrix, S, in which each reaction equation is listed
vertically, as we are solving for rate of the reaction of each equation, rather than rates
of the varying metabolites. The concentrations of substances, such as metabolites or
ATP or NADP, with fixed concentrations are ignored. This is stated by assumption
six. Let these substances be represented by ∗. Let M equal the number of varying
metabolites (and therefore the number of concentrations) and let R equal the number
of reactions (and therefore the number of enzymes and reaction rates).

Definition Stoichiometric Matrix
If S is a stoichiometric matrix, then S has M rows and R columns such that column
j represents reaction j and the individual entires of S are such that:

[S]ij =
+ α if reaction j produces α molecules of Mi,
-α if reaction consumes α molecules of Mi,
0 otherwise

Example S1
A fake system of chemical equations: M=5 R=4
1. ∗+ M5 → M1

2. M1 → M2 + 2M4

3. M2 + 2M4 → M3

4. M3 → M5

S =


1 −1 0 0
0 1 −1 0
0 0 1 −1
0 2 −2 0
−1 0 0 1


And δx

δt
= Sv

From here, we can analyze δx
δt

= Sv in a more complicated manner by introducing
parameters to the rate of reactions. But first, here is an overview of what will happen
without parameters to give you a basic idea of the process.

2.2 The Basics

If you assume no parameters on the reaction rates, then you can analyze the system
in a simple matter. Assume a steady rate of reaction, then δx

δt
= 0 and then

Sv = 0

Then we can simply say that the vector v may be found in the null space of S,
N(S), which dictates how reaction rate control is given to the individual enzymes of
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the reactions in the system assuming that the rate of concentrations of metabolites
does not change. Obviously, if the columns of S reduce to R pivot columns, the only
solution for v is the trivial solution, a vector of zeros. This is problematic since that
would mean the only way to achieve a steady rate of reaction would mean a halt of
each reaction j.

A more likely situation in metabolism is that S does not reduce to R pivot columns.
In this case conservation relationships hold.

Definition Conservation Sum
A conservation sum, T, is the sum of the concentrations of metabolites which remain
constant in a metabolic system regardless of parameter p.

What basis vectors should one choose for N(S)? Each vector in the null space is a
solution to the rate of reactions vector v. Meaning, if a vector, v, in the N(S) reads

1
2
3
4
5


then 1 unit of flux, a measure of reaction rate control factor, is given to the enzyme
which controls the first reaction, 2 to reaction two, and so on. Each choice of a vector
v in the span of N(S) may create a different product, for the metabolic system.

Example S2
Notice that in S from example S1, one conservation relationship can be found by
adding rows 1, 2, 3, and 5 together. They sum to 0. From this we can say that
δx
δt

(M1 + M2 + M3 + M5) = 0. So the metabolites’ concentrations remain constant
such that x1 + x2 + x3 + x5 = T.
Also,

N(S) =< {


1
1
1
1

} >

So each reaction in the metabolic system represented by S is controlled proportionally.

Any vector in the span of the vectors from N(S) is theoretically and biologically
feasible (Schilling 299). Therefore, in the past, a large aspect of MCA was designing
computer programs to create and choose desirable basis vectors. Other methods for
determining elegant vectors have been found in convex analysis (Schilling 300).

2.3 Adding a Parameter

By moving slightly away from the simple structural approach, one may incorporate
parameters for the system. Doing so more or less just changes the look of the vectors
v and x. x, the vector of concentrations of metabolites, is redefined as having depen-
dent, xd, and independent, xi, aspects in correlation to the free and pivot columns of
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S, and v becomes a vector representing steady state concentrations of metabolites,
xi, xd, as well as of external parameters, p.

First define the concentration vector x:
Let r equal the number of pivot columns in S, and therefore the dimension of the row
space. Then, assuming S does in fact have non-pivot columns, R 6= r, rearrange S so
that pivot columns come before non-pivot columns. Then, we can define a matrix L,
named a link matrix, and a matrix Sr such that:

S = LSr

Definition Link Matrix
A link matrix, L is the matrix with M rows and r columns, where the first r rows
(and all r columns) make an r × r identity matrix. The last r rows of L are named
L0. This sub matrix, L0, expresses the dependent reaction rates (of v) in terms of
the independent ones (Hofmeyr 2).

Sr is composed of the first r rows of S. L and L0 will be important later. From
here, the vector x should be written:

x =

[
xi

xd

]
where xi are the independent metabolic concentrations and the first r

entries of x, and xd are the dependent ones and the last m− r entries of x. Then the
solutions to

δ

δt
(xd − L0xi) = 0

express concentrations of metabolites that remain constant in sum within the metabolic
system regardless of perturbations such that xd = L0xi + T, where T is an m − r
dimensional vector of constant sums of concentrations (Hofmeyr 292). The main
purpose of finding conservation sums is that the reaction rates depend on them.

Example S3
Use the same matrix S from example S1. Sr is composed of the first 3 rows of S, since
S has three pivot columns, and they are already in front of the non-pivot columns.

Sr =

1 −1 0 0
0 1 −1 0
0 0 1 −1


L can simply be determined by finding the matrix that when multiplied by Sr = S

L =


1 0 0
0 1 0
0 0 1
0 2 0
−1 −1 −1

 And from this L0 =

[
0 2 0
−1 −1 −1

]

Then we can find all conservation relationships.

x =

[
xi

xd

]
=


x1

x2

x3

−
x4

x5


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δ
δt

(

[
x4

x5

]
-

[
0 2 0
−1 −1 −1

] x1

x2

x3

) = 0

δ
δt

(x4 − (2x2)) = 0

δ
δt

(x5 − (−x1 − x2 − x3)) = 0

−2M2 + M4 = T

M1 + M2 + M3 + M5 = T (as seen previously in example S2)

Now define the vector v:

If S does contain non-pivot columns in reduced row echelon form, then v becomes a
function of x containing xi and xd and a perturbation, p (Reder 12). Note that if S
does not have any non-pivot columns, there are no constant sums of metabolites (T is
empty) and L is an identity matrix, and v is then a function of x, with no distinction
between independent and dependent aspects, and the parameter p.

A steady state vector v(xi,xd, p) is such that Srv(xi,xd, p) = 0.

So, the main question in MCA is how the determined steady-state rates (with their
corresponding reactions) change in response to perturbations. A perturbation may
affect the actual steady state by affecting T or p. The goal is now to determine the
amount of flux that should be given to the individual reactions to adapt to a pertur-
bation of the parameter.

This is done by finding the solutions for v in Sv(xi,xd, p) = 0. All solutions can
be found in a null space. The null space represents all rates of reaction of a metabolic
system, so the null space therefore defines what can and cannot be achieved by the
reactions, and how efficient substrates are made into products (Schilling 298).

3 Perturbation Analysis

A change in the steady state, v(xi,xd, p), may be caused by a perturbation that
causes a change in a parameter. The change in v may be modeled by

v2(xi,xd, p) = v1(xi,xd, p) +
δV

δp
(p2 − p1)

(Hofmeyr 293)
Determining δV

δp
in this equation involves the use of elasticity and control coefficients.

3.1 Elasticity and Control Coefficients

These two coefficients are related to reaction rate. Therefore, they define the response
of a metabolic system to perturbations.
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“A control coefficient is a relative measure of how much a perturbation affects a
system variable” (Mendes Sec.1)

“An elasticity is a local property of an isolated enzyme that expresses how its rate
varies with the concentration of any metabolite that affects it: this can be its

substrate, product, or any other metabolite” (Cornish-Bowden Sec.2)

These coefficients are generally found through experiment (See Cascante 244). In
1991, Sauro and Fell worked on computer programming to determine the coefficients
(Ainsworth). One of the major theorems in MCA relates control coefficients to elas-
ticity coefficients. A definition for δV

δp
of the above equation can be found in this

theorems proof. Below is information compiled from Hofmeyr to the point of δV
δp

.
Hofmeyr is a great reference for a complete proof relating a matrix of control coeffi-
cients to a matrix of elasticity coefficients of a metabolic system.
First, define an elasticity coefficient.

Definition Elasticity Coefficient
An elasticity coefficient is a partial derivative of a reaction rate function (in the vector
V) with respect to individual concentrations in x, or to parameter p.

Definition Matrices of Elasticity Coefficients
Let Ep be a diagonal matrix of all elasticity coefficients with respect to parameters
which effect each reaction in the metabolic system uniquely, and Ex be a matrix of
elasticity coefficients with respect to x (concentration of metabolite).

Find δV
δp

:

Look at Srv(xi,xd, p) = 0

Since T is constant, differentiate with respect to p:

Sr[(
δV
δxi

)xd,T,p(
δXi

δp
)T + ( δx

δxd
)xi,T,p(

δxi

δp
)T + ( δV

δp
)T ] = 0

Now look at xd = L0xi + T

Differentiate with respect to xi:

( δxd

δxi
)T,p = L0

Combine these two differentiated equations and simplify:

Sr

[
δv
δxi

| δv
δxd

] [
Ir

L0

]
( δxi

δp
)T + Sr(

δv
δp

)T = 0

Sr(
δv
δx

)T,p

[
Ir

L0

]
( δxi

δp
)T + Sr(

δv
δp

)T = 0

SrExL( δxi

δp
)T + SrEp = 0

Let M = SrExL. M is invertible by assumption 2. *
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( δxi

δp
) = −M−1SrEp

Since ( δxd

δxi
)T,p = L0 we can say ( δxd

δp
) = L0(

δxi

δp
) = −L0M

−1SrEp

Now differentiate the vector v(xi, xd, p) with respect to p:

( δv(xi,xd,p)
δp

)T = ( δv
δxi

)xd,T,p(
δxi

δp
)T + ( δv

δxd
)xi,T,p(

δxd

δxi
)T,p(

δxi

δp
)p + ( δv

δp
)T

Simplify

( δv(xi,xd,p)
δp

)T = ExL( δxi

δp
)T + Ep

δV
δp

= Ex(−LM−1Sr)Ep + Ep

We have now defined δV
δp

.

*In the midst of this justification, the claim is made that the matrix M = SrExL
is invertible. This is based from the assumption 2, that a metabolic system can be
analyzed at a steady state. Hofmeyr states that if a steady state, V , exists, M is
invertible. This is based off the fact that M is a Jacobian matrix (see Hofmeyr 298).
A Jacobian matrix is like the derivative of a function, as it is the matrix of partial
derivatives of a system of equations (with respect to a state of the metabolic system.)

In a full proof relating elasticity to control coefficients, the diagonalization of ma-
trices containing elasticity coefficients as well as diagonalization of M should occur.
Ep is already a diagonal matrix since it is in relation to parameters that affect single
reactions in the system. Invertible diagonal matrices can be defined to diagonalize
Ex and M (see Hofmeyr 295, 299)

4 Medical Applications

Once again, MCA is the study of how enzyme controlled reaction rates change in
response to changes in parameter. Since genes or enzymes may control the parame-
ters, MCA helps an understanding the effect of diseases, genes effect on controlling
metabolism, and the use of enzymes in cancer treatment. MCA can also help in drug
discovery (Cascante).
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