
An Introduction to Information Retrieval using Singular Value

Decomposition and Principal Component Analysis

Tasha N. Underhill

April 12, 2007

Copyright (c) 2007 Tasha Underhill. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version

1.2 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is

included in the section entitled ”GNU Free Documentation License”.

It takes only a quick Google search to realize the breadth of applications of linear alge-
bra. Heat distribution, Markov chains, Sociology, Games, Cryptography...the list goes on
and on. But wait, even the search engine itself stems from an application of linear alge-
bra! Books could be written about all of these topics, but in this paper we will focus on
two methods of information retrieval which rely heavily on linear algebra. The first is the
topic of information retrieval (IR), for which we will outline the basic vector space model
and explain how rank-reduction of the term-by-document matrix minimizes cost and im-
proves efficiency of the retrieval. This model is quite useful for even very large dimensional
databases of objects indexed by key words. A second method of information matching and
retrieval may be applied to large databases of similar graphics. A statistical method, Prin-
cipal Component Analysis (PCA) is often used to classify and recall images with particular
application in face recognition and medical imaging.

SVD and the Vector Space Model

In this age of technology, there is a need for fast and efficient data retrieval. This is appli-
cable in small businesses, libraries and on a grand scale, the internet. One way this issue
is approached uses a matrix to represent large amounts of data, then relies on vector op-
erations to extract a set of data which is close to the users query. We outline the simplest
method, the vector space model using an example:

In a (very small) database of cook books there are 5 documents, titled:

d1: Quick and Easy Dinners
d2: Vegetarian Cooking: Healthy Meals Made Easy
d3: Cooking Up a Storm: Preparing Meals for 100+
d4: 101 Healthy Crockpot Dinners
d5: Cook Like Martha: 50 Recipes Guaranteed to Please

Each of these documents may be indexed by certain terms contained in the titles. The
associated terms for this set of documents are:

t1: meal
t2: dinner(s)
t3: recipe
t4: cook(ing)
t5: health(y)
t6: vegetarian

To allow for variations in the user’s query, stemming is used to improve the return, such
that words are reduced to their stems. For instance, a user may search for cooking, which
will be recognized as cook. The indexed documents may be displayed as a 6x5 (term x
document) matrix A, where the element aij refers to the number of times a term i occurs
in the title of a document j.

2

A =



0 1 1 0 0
1 0 0 1 0
0 0 0 0 1
0 1 1 0 1
0 1 0 1 0
0 1 0 0 0


We now have a nice matrix which tells us there are certain terms in the title of certain
documents. However, since the content of a document is not determined by the number of
times a term appears but rather the relative frequencies of the terms, we scale each column
so it has norm 1:

Â =



0 0.5 0.7071 0 0
1 0 0 0.7071 0
0 0 0 0 0.7071
0 0.5 0.7071 0 0.7071
0 0.5 0 0.7071 0
0 0.5 0 0 0


Let’s see what happens when a user conducts a search. The user may wish to search for
books relating to healthy vegetarian dinners. Representing this query as a vector with
nonzero terms corresponding to the terms healthy, vegetarian, and dinners we have:

q =



0
1
0
0
1
1


In order to relate the matrix A and the query vector q, we determine the cosine of the angle
between q and each column aj of A. The cosine is computed according to:

cos θj =
aT

j q

‖aj‖2‖q‖2
=

∑t
i=1 aijqi√∑t

i=1 a2
ij

√∑t
i=1 q2

i

(1)

The cosines between the angles are, in order, 0.57735, 0.288675, 0, 0.57735, 0. This means
the documents which are returned are d1, d2 and d4. The documents which contain none of
the query terms are accurately not returned. One question this method brings up concerns
the accuracy of the return: At what value should we place the cutoff for the cosine such
that documents which do not meet the cutoff are not returned? In this very small example,
we could set the cutoff to be cos θj = 0.5. This would mean only the documents ”Quick
and Easy Dinners” and ”101 Healthy Crockpot Dinners” are returned. The only document
containing the search term vegetarian is not returned, which is probably the most relevant
to the user. It is easy to see the limitations of this IR model.
There are several methods which make this model more accurate and efficient. One method

3

uses the singular value decomposition and rank-reduction of the term-by-document matrix
Â. In the singular value decomposition, Â = UDV T , where U is a unitary mxm matrix. D
is mxn matrix with the k singular values of Â on the first k diagonal entries of D and the
rest of the entries equal to zero. V T is another unitary nxn matrix. For steps on how to
compute a singular value decomposition, see [6], or employ the use of mathematics software
such as Mathematica.
In this particular case, we have:

Â =



0 0.5 0.7071 0 0
1 0 0 0.7071 0
0 0 0 0 0.7071
0 0.5 0.7071 0 0.7071
0 0.5 0 0.7071 0
0 0.5 0 0 0

 =



0.479 0.189 0.398 −0.474 −0.134 −0.577
0.283 −0.86 −0.26 −0.311 0.132 0
0.213 0.138 −0.664 0.395 0.074 −0.577
0.692 0.327 −0.266 −0.079 −0.060 0.577
0.353 −0.313 0.414 0.684 −0.371 0
0.203 0.035 0.303 0.218 0.904 0





1.457 0 0 0 0
0 1.297 0 0 0
0 0 0.837 0 0
0 0 0 0.632 0
0 0 0 0 0.306
0 0 0 0 0




0.194 0.593 0.568 0.308 0.439
−0.663 0.092 0.281 −0.639 0.254
−0.31 0.508 0.112 0.131 −0.785
−0.492 0.275 −0.619 0.417 0354
0.431 0.554 −0.45 −0.552 0.032


To reduce the rank of Â to k, choose the first k nonzero singular values of Â and their

corresponding columns of U and of V T . We know the rank of Â is rÂ=5 because A has five
nonzero singular values [6]. Maybe we should reduce the rank to 4 or even 3. To determine
the amount of change that would occur by reducing the rank of Â, the Frobenius norm of Â
minus the rank-reduced Âk compared to the Frobenius norm of Â is used. Frobenius norm
is defined as:

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 (2)

We are interested in finding the percentage of relative change of a rank-reduced matrix
to determine by how much we may reduce without loss of information. This is done by the
formula:

||Â − Âk||F
||Â||F

(3)

The numbers associated with our example are:

||Â−Â4||F
||Â||F

= 0.13689,

4

for a rank-4 approximation to Â and

||Â−Â3||F
||Â||F

= 0.702595,

for a rank-3 approximation. We see that reducing Â to a rank 4 only requires about a
14% change, while reducing Â further to rank 3 requires a massive 70%. Let’s stick with
a reduction to rank 4 and see what this buys us. As before, we must compare the query
vector q to the rank-reduced A4. Again we find the cosine of the angle between A4 and q,
and use a cutoff value which serves to display only relevant items. We use the same formula
as before, but with transposed columns of A4 rather than transposed columns of Â:

cos θj =
(Akj

)T q

‖Akj
‖2‖q‖2

(4)

Using this formula, the cosine of the angles between q and each column representing a
document of A4 are 0.53134, 0.519757, 0.0533917, 0.894272, and -0.003775. When we
compare these values and the values obtained for the cosine of the angle between q and Â,
(0.57735, 0.288675, 0, 0.57735, 0), we see a similarly high value for the cosine of the angle
between the vectors for the first, second and fourth document. At first glance there doesn’t
seem to be much value in reducing the rank of the weighted term by document matrix.
However, recall that the second document would not have been returned if a cutoff value
was set at a reasonable cos θj = 0.5. Since the search terms included the term vegetarian,
the second document is definitely relevant.
Besides a more precise return, rank-reduction also allows for cheaper and faster computing.
We can rewrite equation (4) in the following way:

cos θj =
(Akj

)T q

‖Akj
‖2‖q‖2

=
(UkDkV

T
k ej)T q

‖UkDkV
T
k ej‖2‖q‖2

=
eT
j VkDk(UT

k q)

‖DkV
T
k ej‖2‖q‖2

We use columns of the identity matrix, ej to give the jth column of Ak. Now we define a
vector pj = DkV

T
k ej and rewrite the formula for cosine as:

cos θ′j =
pT

j (UT
k q)

‖pj‖2‖q‖2
(5)

This representation of the cosine is especially good, because it makes it easy to relate the
bases of U and V T . The elements in the vector pj are the coordinates of the corresponding
column of Ak in the basis consisting of the columns of Uk. Further, based on observations
about the projection of q into the column space of Ak, we can write an alternate cosine
formula to compare query vector and document matrix [5]:

5

cos θ′j =
pT

j (UT
k q)

‖pj‖2‖UT
k q‖2

(6)

Equation (6) needs only computations in a k-dimensional space, thus saving cost of com-
putation.
We have shown a very crude model for data retrieval. Of course, there are many ways to
improve and add to the complexity of this IR model. As this is merely an overview, the
reader is referred to the list of references for more in-depth articles. Keeping with methods
of information retrieval, we will now provide an overview of the use of Principal Component
Analysis in reference to data storage and image retrieval.

PCA Applied to Image Recognition and Recall

Principal component analysis is a statistical method which may be used to find patterns
in high-dimensional data in efforts to find a lower-dimensional representation of the data.
Before we explore the application of PCA we must explain some basic statistics formulas,
including standard deviation, variance and covariance. We assume a knowledge of eigenval-
ues and eigenvectors of a matrix, and then proceed to the method of PCA.
A set of data X = {x1, x2, ..., xn}, with a mean X̄, has a certain spread from the mean
which is given by the standard deviation of the data set, s.

s =

√∑n
i=1(Xi − X̄)2

(n − 1)
(7)

The variance of a data set is merely the square of the standard deviation, and is denoted
s2. As the variance and standard deviation only apply to one-dimensional data sets, they
are not useful for comparing two ore more different sets of data. Thus, a measure is needed
to determine how much the data in multiple dimensions vary from the mean with respect
to each other. This is known as the covariance and is formulated as

cov(X, Y) =
∑n

i=1(Xi − X̄)(Yi − Ȳ)
(n − 1)

(8)

with Y denoting a set of data Y = {y1, y2, ..., yn}. Covariance may only be measured
between two dimensions. When dealing with higher dimensional data sets, a covariance
matrix depicts the covariance between each dimension. The entries of a covariance matrix
representing n dimensions are given by

cij = cov(xi, xj) 1 ≤ i, j ≤ n (9)

6

The resulting covariance matrix is symmetric with the variance of each dimension on the
diagonal. With the statistics we need in place, we may now discuss the method of PCA. To
begin, the mean of a set of data must be subtracted from each of the elements in the set.
Next calculate the covariance matrix. As this matrix is an nxn real symmetric matrix, we
can compute its (positive) eigenvalues and eigenvectors. These eigenvectors are guaranteed
to form an orthogonal set, thus in a two-dimensional example we would be able to plot
the data and see that one eigenvector points along the line of the correlation of data, and
the other would lie perpendicular to the first. [1][6] In higher dimensions, the eigenvector
which corresponds to the largest eigenvalue is denoted the principal component of the data
set. The principal component of a data set corresponds to the most significant relationship
between the sets.
Now we are free to order the eigenvectors in descending order, according to their associated
eigenvalues. The lower the eigenvalue, the less significant is the corresponding eigenvector.
Next, we may reduce the dimension by omitting the least significant eigenvectors for the
next step. The amount of reduction is determined heuristically, depending on the data
set and conditions on its accuracy. The more we reduce the rank, the less the data will
resemble the original. To give some perspective, in a very large dimensional space (such as
when working with images), we may reduce the rank by several thousands in order to see
a measurable difference from the original data. Once we have decided which eigenvectors
we wish to keep, we form a feature vector which is a matrix with columns made up of the
remaining k eigenvectors.
In order to create a new set of data in terms of the remaining eigenvectors, we use the feature
vector and the original mean-adjusted data. This is done by matrix multiplication of the
matrix V representing the transposed feature vector by the matrix R whose ith column lists
the ith data point from each of the n dimensions of the set. The resulting matrix relates
the ith data point (1≤ i ≤ n) to the set of k ≤ n eigenvectors of the covariance matrix.
If we wish to apply principal component analysis to information retrieval we find one natural
application in image retrieval. One of the most interesting components of image retrieval
is computerized facial recognition. In this application, a large collection of pictures of faces
is used as a training set. Each face is indexed by pixel value and any new face is compared
to a basis of the training set’s eigenfaces. The following techniques are often employed in
medical imaging where there may be a large volume of very similar images (such as brain
scans).
Each of the M images is denoted by a 1xn vector which is the concatenation of pixel values
of the n rows of the (gray-scale)image. As above, we must subtract the mean of the data
from each face vector, which leaves us with the set of vectors {Φ1,Φ2, ...,ΦM}. Next we
define the covariance matrix

C =
1
M

M∑
i=1

ΦiΦT
i

= AAT

where the column Aj=Φj , 1 ≤ j ≤ M . We must find the eigenvalues and associated
eigenvectors of AAT , which are denoted as the set’s eigenfaces and span a subspace M ′

of n2. Now that we have the eigenface decomposition in place we may use it for facial
recognition. When confronted with a new image Γ, the vector must be projected into ”face
space” by a weighting

7

ωk = uT
k (Γ−Ψ) 1 ≤ k ≤ M ′, (10)

where uT
k is an eigenvector of C, and Ψ is the mean of the data set. When placed as columns

of a matrix, these weights ωk form a matrix ΩT , which describes how much contribution
each eigenface makes to the new face. Ω is then compared using the distance between Ω and
a pre-set class of faces described by Ωk by calculating the Euclidean distance ε = ‖(Ω−Ωk)‖
and determining if the value is below some threshold value αε. If ε ≤ αε then the new face
in question has similar enough characteristics to be classified as ”known”. Otherwise it is
“unknown” and is not in the set of initial faces.
Some limitations of this application is the time it takes to calculate whether a new face is
in a certain face class or not. Also, different lighting, movement or facial expressions will
influence whether the face in question matches a known face in a database. Work has been
done to apply PCA in order to aid the indexing of medical images such as brain scans, when
there are many thousands of images which look very similar to the human eye. It is much
more time-consuming for a human to analyze and index each brain scan by its features
than for a computer to find which classification the scan is closest to, as determined by the
Euclidean distance between two matrices.

While linear algebra plays a major role in simple information retrieval models, there are
many more models which rely on other branches of mathematics. Vector space models
often use matrices and matrix-vector operations to compartmentalize data, and exploit the
geometric properties associated with the vectors to determine the proximity of query and
relevant data in a set. The singular value decomposition is only a small example of a multi-
tude of decompositions and factorizations related to vector space models. Effective models
try to combat both polysemy, words which may have more than one meaning and synonymy,
different words which mean the same thing. Both polysemy and synonymy must be con-
sidered when indexing documents as well as building a computerized information retrieval
system. With very large databases, such as a collection of web pages on the internet or
a library index, there is also a concern of cost-effectiveness of the IR system. Thus mod-
els are sought which reduce the number of calculations which must be performed for each
search. The problems of indexing higher-dimensional objects such as images or video are
combated with the use of dimension-reduction procedures. Principal component analysis
allows very large sets of high-dimensional data to be accurately and efficiently described in
much smaller dimension. The problems associated with indexing a large number of similar
images, such as in medicine or astrophysics, may be a dealt with by an automated indexing
which employs methods such as PCA. The science of information retrieval is a thriving
subject, and will continue to improve the methods for indexing and retrieving documents
from increasingly large databases.

8

Bibliography

[1] Smith, Lindsay I., “A tutorial on Principal Components Analysis,”, (New Zealand: University
of Otago, Feb. 26, 2002).

[2] Rechtsteiner, Andreas; Rocha, Luis M.; Wall, Michael E., “Singular Value Decomposition and
Principal Component Analysis.” A Practical Approach to Microarray Data Analysis. Ed. D.P.
Berrar, W. Dubitzky, M. Granzow. (Norwell, MA: Kluwer, 2003): 91-109

[3] Turk, Matthew A.; Pentland, Alex P., “Face Recognition Using Eigenfaces, ” Vision and Model-
ing Group, The Media Laboratory, (Boston, MA: Massachusetts Institute of Technology, 1991).

[4] Sinha, Usha; Kangarloo, Hooshang., “Principal Component Analysis for Content-based Image
Retrieval,” RadioGraphics,(22), (California: 17 Apr. 2002): 1271-1289.

[5] Berry, Michael W.; Drmac, Zlatko; Jessup, Elizabeth R., “Matrices, Vector Spaces, and Infor-
mation Retrieval,” SIAM Review,41(2), (Jun. 1999): 335-362.

[6] Beezer, Robert A., “A First Course in Linear Algebra,” (Tacoma, WA: Department of Mathe-
matics and Computer Science, 2006).

[7] Berry, Michael W.; Browne, Murray, Understanding Search Engines: Mathematical Modeling and
Text Retrieval. (Philadelphia, PA: Society for Industrial and Applied Mathematics, 1999).

9

