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Generalized Inverses and Generalized Connections with Statistics

Consider an arbitrary system of linear equations with a coefficient matrix A ∈ Mn,n, vector
of constants b ∈ Cn, and solution vector x ∈ Cn :

Ax = b
If matrix A is nonsingular and thus invertible, then we can employ the techniques of matrix
inversion and multiplication to find the solution vector x. In other words, the unique solution
x = A−1b exists. However, when A is rectangular, dimension m × n or singular, a simple
representation of a solution in terms of A is more difficult. There may be none, one, or an
infinite number of solutions depending on whether b ∈ C(A) and whether n− rank(A) > 0.
We would like to be able to find a matrix (or matrices) G, such that solutions of Ax = b are
of the form Gb. Thus, through the work of mathematicians such as Penrose, the generalized
inverse matrix was born. In broad terms, a generalized inverse matrix of A is some matrix G
such that Gb is a solution to Ax = b.

Definitions and Notation

In 1920, Moore published the first work on generalized inverses. After his definition was
more or less forgotten due to cumbersome notation, an algebraic form of Moore’s definition
was given by Penrose in 1955, having explored the theoretical properties in depth. We give
the Penrose definition as it will be referred to frequently.

Definition Penrose Generalized Inverse
For any matrix A ∈ Mm,n there exists a matrix G ∈ Mm,n satisfying the conditions

(i) AGA = A
(ii) GAG = G
(iii) (AG)∗ = AG
(iv) (GA)∗ = GA

where M∗ is the conjugate transpose of the square matrix M .

There are other types of generalized inverses which are defined by satisfying only some
of the conditions given above, but we will focus on the generalized inverse. As with any new
concept or idea, the first important fact to be established is the existence and uniqueness of
a generalized inverse matrix. We begin with existence and uniqueness will follow.

Theorem 0.0.1 Existence of Generalized Inverse For any matrix A, there is a matrix Ag,
which has its rows and columns in the row space and column space of AT and also satisfies
equations (i)-(iv) from the definition above.

The proof of this existence theorem is lengthy and is not included here. For the interested
reader, the proof can be found in the article by T. N. E. Greville The Pseudoinverse of a
Rectangular or Singular Matrix and its Application to the Solution of Systems of Linear
Equations, where pseudoinverse is synonymous with generalized inverse. Next we address
the uniqueness of a generalized inverse, so we can refer to a matrix Ag as the generalized
inverse.
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Theorem 0.0.2 Uniqueness of Generalized Inverse
Given a matrix A ∈ Mm,n, there exists a matrix G, such that G provides a unique solution
to equations (i) - (iv) given above.

Proof To establish the uniqueness of Ag, we show that if G is any matrix satisfying the
defining equations for Ag, then GAA∗ = A∗ and G∗ = AB1 for some matrix B1. First we can
combine condition (i) and (iii) from the Penrose definition to show that GAA∗ = A∗. The
conjugate transpose of (ii) using (iv) gives G∗ = G∗A∗G∗ = A(GG∗) = AB1 for B1 = GG∗.
Likewise, G satisfies the same two equations for another matrix B2. Using GAA∗ = A∗, we
have

(G− Ag)AA∗ = 0 or (G− Ag)A = 0

Using G∗ = AB1, (G−Ag) = (B∗
1−B∗

2)A
∗ which implies (G−Ag)C = 0, where the matrix C

has columns orthogonal to the columns of A. The equations (G−Ag)AA∗ = 0 or (G−Ag)A =
0 and (G − Ag)C = 0 together imply that G − Ag = 0, which establishes the uniqueness
of Ag. �

It is interesting to note that the Penrose definition includes the case A = O, since
the generalized inverse of the zero matrix, Om,n is equal to its transpose On,m. We can also
relate the generalized inverse back to a regular inverse matrix. Essentially the regular inverse
matrix is a special case of a generalized inverse matrix. We bring to light the connection in
the following theorem.

Theorem 0.0.3 Regular Inverse and Generalized Inverse
If A is a nonsingular matrix of size n, then A−1 is the generalized inverse matrix guaranteed
in the Penrose definition by the existence and uniqueness theorems.

Proof We check the four conditions listed in the Penrose definition, letting G = A−1.
(i) AA−1A = InA = A as desired.
(ii) A−1AA−1 = InA

−1 = A−1 as desired.
(iii) (AA−1)∗ = (In)∗ = In since the identity matrix is real and composed of real numbers.
(iv) (A−1A)∗ = (In)∗ = In by the same reasoning as above.
Thus the inverse A−1 is actually the generalized inverse of a nonsingular matrix A.

Methods of Calculation

Most of the writing on the computational aspects of generalized inverses is highly theoretical,
only dealing with alternative algebraic structures or interesting properties of the various
types of generalized inverses. This is likely due to the fact that the usefulness of generalized
inverses, in statistical areas especially, is theoretical rather than practical [Pringle]. With
that, the calculation of Ag from a matrix A can be difficult. We present an example of the
generalized inverse for a simple 3×2 matrix and let the reader verify conditions (i)-(iv) from
the Penrose definition.

Example 3× 2 Generalized Inverse

Given the 3 × 2 matrix A =

1 2
2 4
1 2

, without any justification, the generalized inverse is

given by Ag =

[
1
30

1
15

1
30

1
15

2
15

1
15

]
.
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We now present a method which will enable us to begin to calculate generalized inverses
of small matrices like the one given in the previous example. This method should help give
a feeling of what constructing Ag entails, using the functional definition included in S.L.
Campbell’s Generalized Inverses of Linear Transformations. Though not presented here, it
is instructive to follow for the linear algebra involved, while the interested reader can research
the motivation behind this method.

Example Campbell’s Method

Let A =


1 1 2
0 2 2
1 0 1
1 0 1


Then the column space of A∗, denoted C(A∗) is spanned by the basis

1
1
2

 ,

0
2
2

 ,

1
0
1

 ,

1
0
1


Using results from Linear Algebra, a basis of C(A∗) can be shown to be

1
0
1

 ,

0
1
1


Now,

A

1
0
1

 =


3
2
2
2

 and A

0
1
1

 =


3
4
1
1

 . Thus Ag


3
2
2
2

 =

1
0
1

 and Ag


3
4
1
1

 =

0
1
1


since AgAx = x if x ∈ C(A∗) = C(Ag) as shown in Campbell’s functional definition.
The null space of A∗ is 〈


−1
1
2

1
0

 ,


−1
1
2

0
1




〉

Then Ag


−1
1
2

1
0

 = Ag


−1
1
2

0
1

 = ~0 ∈ C3 since Agx = 0 for x ∈ N (A∗) also as shown in

Campbell’s functional definition.
Combining all of this gives

Ag


3 3 −1 −1
2 4 1

2
1
2

2 1 1 0
2 1 0 1

 =

1 0 0 0
0 1 0 0
1 1 0 0

 or Ag =

1 0 0 0
0 1 0 0
1 1 0 0




3 3 −1 −1
2 4 1

2
1
2

2 1 1 0
2 1 0 1


−1
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So Ag =

1
7
− 5

21
11
42

11
42

0 1
3

−1
6
−1

6
1
7

2
21

2
21

2
21


Note the indicated inverse can always be computed since its columns form a basis

for C(A) ⊕ N (A∗) and hence are a linearly independent set of four vectors in C4. This
direct sum result is proven in Campbell’s Generalized Inverses and we encourage the inter-
ested reader to study it carefully, but we will not include it here. Below is a formal statement
of the methods employed above.

Theorem 0.0.4 Campbell’s Method Computation
Let Am×n ∈ Cm×n have rank r. If {v1, v2, . . . , vr} is a basis for C(A∗) and {w1, w2, . . . , wn−r}
is a basis for N (A∗), then

Ag =
[

v1 v2 . . . vr 0 . . . 0
] [

Av1 Av2 . . . Avr w1 w2 . . . wn−r

]−1

where the entries in the matrices above represent columns.

Proof By using the properties of matrix-vector multiplication across columns and the
property AgAx = 0 if x ∈ N (A) and AgAx = x if x ∈ C(A∗) = C(Ag), we have

Ag
[
Av1 . . . Avr w1 . . . wn−r

]
=

[
AgAv1 . . . AgAvr Agw1 . . . Agwn−r

]
=

[
v1 . . . vr 0 . . . 0

]
Again the entries in the matrices above actually represent column vectors.
Furthermore, {Av1, Av2, . . . , Avr} must be a basis for C(A) since the set {v1,v2, . . . ,vr} is
linearly independent and has size equal to the number of columns of A∗ with leading 1’s.
Thus, since A∗ has n rows, and the basis for C(A∗) has r vectors, then multiplying each of
the vectors in the basis on the left by A will yield a set of r (m× 1) vectors. Since matrix A
was defined to have rank r, then we have the correct dimension and linear independence so
the set {Av1, Av2, . . . , Avr} is a basis for C(A). Similarly, since the set of all x ∈ Cn that
yield the zero vector when the inner product is computed with any element of C(A) is equal
to N (A∗), it follows that the matrix[
Av1 Av2 . . . Avr w1 w2 . . . wn−r

]
must be nonsingular. (See Campbell’s Proposition 0.2.1 for the proof that the set of
vectors u ∈ Cn such that 〈u, v〉 = 0 for every v ∈ C(A) equals the null space of A). The
desired result is now immediate. �

One other method to compute the generalized inverse uses an idea suggested by A.S.
Householder, in a method developed by Thomas Greville, which can be found in Generalized
Inverses Theory and Applications by Ben-Israel and Greville. We encourage the interested
reader to study the proof carefully, but here we only give a proposition. Recall that the rank
is equal to the number of pivot columns or the number of nonzero rows, and other equivalent
properties. Using the rank we can decompose a rectangular matrix into two pieces in order
to compute the generalized inverse.

Proposition 0.0.5 Rank Factorization
If A ∈ Cm×n, then there exists B ∈ Cm×r, C ∈ Cr×n, such that A = BC and r = rank(A) =
rank(B) = rank(C).
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Theorem 0.0.6 Rank Decomposition
Let r be the rank of a m×n matrix A and A = BC , where B and C are the matrices given
by the Rank Factorization Proposition. Then, Ag = CgBg where Bg = (B∗B)−1B∗

is the generalized inverse for matrix B and Cg = C∗(CC∗)−1 is the generalized inverse for
matrix C.

Before we prove the Rank Decomposition Theorem, we give some lemmas regarding
conjugation and inversion. These are given without proof as they are trivial, but for the
interested reader, look to Robert Beezer’s A First Course in Linear Algebra text.

Lemma 0.0.7 Conjugate of Conjugation
For any matrix A, (A∗)∗ = A.

Lemma 0.0.8 Conjugate of Inverse
For a nonsingular matrix A, (A−1)∗ = (A∗)−1.

Lemma 0.0.9 Conjugate of Product
For any m× n matrix A and any n× p matrix B, (AB)∗ = B∗A∗.

These lemmas play a large part in the following proof.

Proof We now check the four conditions listed in the Penrose definition.

(i) B(B∗B)−1B∗B
= B(B∗B)−1(B∗B)
= BIk = B

(ii) (B∗B)−1B∗B(B∗B)−1B∗

= (B∗B)−1(B∗B)(B∗B)−1B∗

= Ik(B
∗B)−1B∗

= (B∗B)−1B∗ = Bg

(iii) (B(B∗B)−1B∗)∗

= ((B((B∗B)−1))(B∗))∗ using Conjugation of Product and Inverse lemmas
= B(B((B∗B)−1))∗

= (B((B∗B)−1)B∗) = BBg

(iv) ((B∗B)−1B∗B)∗

= (((B∗B)−1)∗(B∗B))∗ = using Conjugation of Product and Inverse lemmas
= (((B∗B)−1)(B∗B))
= ((B∗B)−1B∗B) = BgB

The proof of checking conditions (i)-(iv) for the Penrose definition of the generalized
inverse for matrix Cg is very similar to the proof for Bg so we will leave this to the reader
to carefully prove.
After verifying the conditions for Cg, Bg and Cg satisfy the four conditions listed in the
Penrose definition. Now, using the factorization of A, we can express Ag as

Ag = (BC)g = CgBg = C∗(CC∗)−1(B∗B)−1B∗ �
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This result is similar to regular inverses of nonsingular matrices–if we had A = BC, where
A, B, C, are all nonsingular matrices, then taking the inverse of both sides reverses the order
of B and C to give A−1 = C−1B−1. However, we must be very careful since (BC)g = CgBg

does not hold in general, unless B is of full column rank and C is of full row rank, since in
that case we have

(BC)g = C∗(CC∗)−1(B∗B)−1B∗ = CgBg (as shown above)
and we can apply the Rank Factorization Proposition.

We can extend this method with two special cases, both can be thought of as A being
halfway nonsingular. Here are the corollaries to the Rank Decomposition Theorem.

Corollary 0.0.10 Full Row Rank Decomposition
In our initial decomposition of A = BC, if A has full row rank, in other words r = m, then
B can be chosen to be the identity matrix Im, and C is now of dimension m×n. The formula
of the decomposition then becomes A = ImC, and the formula for Ag reduces to

Ag = A∗(AA∗)−1

Corollary 0.0.11 Full Column Rank Decomposition
In our initial decomposition of A into A = BC, if A has full column rank, so that r = n,
then C can be chosen to be the identity matrix In, and B is now of dimension m × n. The
decomposition then becomes A = BIn, and the formula for Ag reduces to

Ag = (A∗A)−1A∗

The proofs of these are straightforward and can be verified simply by plugging into the
Rank Decomposition theorem. We now carefully study an example of the decomposition
technique detailed above.

Example Rank Decomposition

Let A =

[
1 1 2
2 2 4

]
The rank of A is r = 1, since A row-reduces to

[
1 1 2
0 0 0

]
and has only one leading 1. We

decompose A into A = BC where B ∈ M2,1 and C ∈ M1,3. We can extract the column

vector

[
1
2

]
to show with little thought that A =

[
1
2

] [
1 1 2

]
.

Then B∗B =
[
1 2

] [
1
2

]
=

[
5
]
, and CC∗ =

[
1 1 2

] 1
1
2

 =
[
6
]
.

Thus Ag = C∗(CC∗)−1(B∗B)−1B∗ =

1
1
2

 [
1
6

] [
1
5

] [
1 2

]
= 1

30

1 2
1 2
2 4

 =

 1
30

1
15

1
30

1
15

1
15

2
15


The method of computing Ag described in the Rank Decomposition Theorem may

be executed by reducing A with elementary row operations. This formalized process is
implemented as an efficient algorithm for calculating generalized inverses. But first, we give
a new definition.
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Definition Row-Echelon Form
A matrix E ∈ Mm,n which has rank r is said to be in row echelon form if E is of the form

E =

[
Cr×n

0(m−r)×n

]
where the elements cij of C(= Cr×n) satisfy the following conditions,

(i) cij = 0 when i > j
(ii) The first non-zero entry in each row of C is 1
(iii) If cij = 1 is the first non-zero entry of the ith row, then the j th column of C

is the unit vector ei whose only non-zero entry is in the ith position.

Example REF
The matrix

E =


1 2 0 3 5 0 1
0 0 1 −2 4 0 0
0 0 0 0 0 1 3
0 0 0 0 0 0 0
0 0 0 0 0 0 0


is in row-echelon form as it satisfies the conditions stated in the definition above.

Below we state some facts about the row-echelon form, the proofs of which are somewhat
trivial in relation to generalized inverses, so we encourage the interested reader on his own
time to find the proofs in Ben Noble’s Applied Linear Algebra.

Properties 0.0.12 Row Echelon Form
For A ∈ Cm,n such that rank(A) = r :

(E1) A can always be row-reduced to row-echelon form by elementary row operations
(i.e. there always exists a non-singular matrix P ∈ Mm,m such that PA = EA where EA is
in row-echelon form).

(E2) For a given A, the row-echelon form EA obtained by row-reducing A is unique.

(E3) If EA is the row-echelon form for A and the unit vectors in EA appear in columns
i1, i2, . . . , and ir, then the corresponding columns of A are a basis for C(A). This particular
basis is called the set of distinguished columns or pivot columns of A. The remaining columns
are called the undistinguished columns of A. For example, the matrix E has pivot columns
for the first, third, and sixth columns.

(E4) If EA is the row-echelon from the Row-Echelon Form Definition for A, then N (A) =
N (EA) = N (C).

(E5) If the partitioned matrix in Definition Row-Echelon Form is the row echelon
form for A, and if B ∈ Cm×r is the matrix made up of the pivot columns of A (in the
same order as they are in A), then A = BC where C is obtained from the partitioned row
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echelon form as in the definition above. This is known as a full rank factorization such as
was detailed in the Rank Factorization Proposition above.

We can proceed to define an algorithm, adapted from S.L. Campbell’s Generalized In-
verses of Linear Transformations, to obtain the full rank factorization and generalized inverse
for any A ∈ Mm,n. Here we go.

Algorithm Rank Factorization
(I) Reduce A to row echelon form EA.

(II) Select the pivot columns of A and place them as the columns in a matrix B in the
same order as they appear in A.

(III) Select the non-zero rows from EA and place them as rows in a matrix C in the same
order as they appear in EA.

(IV) Compute (CC∗)−1and(B∗B)−1.

(V) Compute Ag as Ag = C∗(CC∗)−1(B∗B)−1B∗.

Example REF Rank Factorization
Using the algorithm above, we find Ag where

A =


1 2 1 4 1
2 4 0 6 8
1 2 0 3 4
3 6 0 9 12


(I) Using elementary row operations we reduce A to its row echelon form

EA =


1 2 0 3 4
0 0 1 1 −3
0 0 0 0 0
0 0 0 0 0


(II) The first and third columns are pivot columns. Thus

B =


1 1
2 0
1 0
3 0


(III) The matrix C is made up of the non-zero rows of EA so that

C =

[
1 2 0 3 4
0 0 1 1 −3

]
(IV) Now CC∗ =

[
30 −9
−9 11

]
and B∗B =

[
15 1
1 1

]
. Calculating (CC∗)−1 and (B∗B)−1 we

get (CC∗)−1 = 1
249

[
11 9
9 30

]
and (B∗B)−1 = 1

14

[
1 −1
−1 15

]
.
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(V) Substituting the results of steps (II), (III), and (IV) into the formula for Ag gives

Ag = C∗(CC∗)−1(B∗B)−1B∗ = 1
3486


126 4 2 6
252 8 4 12
420 −42 −21 −63
798 −30 −15 −45
−756 142 71 213


Applications and Connections

We finally turn to the connection with exactly what kind of solutions generalized inverses
give. First let us recall some notation and a simple lemma. We denote the Euclidean norm
of a vector w, or the inner product 〈w, w〉, as ||w||.

Lemma 0.0.13 Norm of Sum
If u, v ∈ Cp and 〈u, v〉 = 0, then ||u + v||2 = ||u||2 + ||v||2.

Proof Supposing the hypotheses given in the Lemma above, then ||u + v||2 = 〈u+v, u+v〉 =
〈u, u〉+ 〈v, u〉+ 〈u, v〉+ 〈v, v〉 = ||u||2 + ||v||2.

Let us revisit the problem of finding solutions x to Ax = b, A ∈ Mm,n, b ∈ Cm. If this
system of equations is overdetermined, we can still look for a vector u that minimizes Au− b
or ||Au− b||2. The following definition and theorem is adapted from Gene Golub’s Matrix
Computations and Campbell’s work.

Definition Least Squares Solution
Suppose that A ∈ Mm,n and b ∈ Cm. Then a vector u ∈ Cn is called a least squares
solution to Ax = b if ||Au− b|| ≤ ||Av − b|| for all v ∈ Cn. A vector u is called a minimal
least squares solution to Ax = b if u is a least squares solution to Ax = b and ||u|| < ||w||
for all other least squares solutions w.

The name least squares is derived from the definition of the Euclidean norm as the square
root of the sum of squares. If b ∈ C(A), then the concepts of solution and least squares
solution obviously coincide as we will see in the next theorems.

Theorem 0.0.14 Least Squares Solution
Suppose A is an m× n, usually with m > n in the case of minimizing residuals for a given
plot, x is an unknown n-dimensional parameter vector and b is a known m-dimensional
measurement vector. If we want to minimize the Euclidean norm of the residual, ||Ax− b||,
then a solution vector x which minimizes the residual is given by x = (A∗A)−1A∗b = Agb for
a matrix A of full column rank.

Proof Adapted from Bapat’s Linear Algebra & Linear Models
Using the fact that ||v||2 is equal to v∗v, we rewrite ||Ax− b|| as (Ax − b)∗(Ax − b) =
(Ax)∗(Ax)− b∗Ax− (Ax)∗b + b∗b. The two middle terms are equal, as can be shown easily,
again we encourage the reader to do so, and the minimum of this can be found by taking the
derivative of A∗A(x)2 − 2A∗bx with respect to x, setting the derivative equal to zero, and
solving for the minimizing vector x. Thus, the equation is 2A∗Ax − 2A∗b = 0, which has
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a minimum at A∗Ax = A∗b. This is now a system of linear equations, but by hypothesis,
we presumed that A is of full column rank, and since A∗A is a square matrix, we also know
that A∗A is invertible. Thus, a solution of the system of linear equations is given by x =
(A∗A)−1A∗b = Agb, where Ag = (A∗A)−1A∗ by the Full Column Rank Decomposition
Corollary. �

Since Ag is unique, the minimal least squares solution is a unique solution, but we will
be more precise in the next theorem.

Theorem 0.0.15 Least Squares and Generalized Inverse Uniqueness
Suppose that A ∈ Mm,n and b ∈ Cm. Then Agb is the minimal least squares solution
to Ax = b.

Proof Notice that ||Ax− b||2 = ||Ax− AAgb⊕−(I − AAg)b||2 = ||Ax− AAgb||2.
Thus x will be a least squares solution if and only if x is a solution of the consistent
system Ax = AAgb. But solutions of Ax = AAgb are of the form x = Ag(AAgb) ⊕ (I −
AgA)b = Agb⊕ (I − AgA)b. Since ||x||2 = ||Agb||2 we see that there is exactly one minimal
least squares solution x = Agb. �

If minimality is not as important, then the next theorem can be very useful.

Theorem 0.0.16 Forms of Least Squares Solutions
Suppose that A ∈ Mm,n and b ∈ Cm. Then the following statements are equivalent

(i) u is a least squares solution of Ax = b
(ii) u is a solution of Ax = AAgb
(iii) u is a solution of A∗Ax = A∗b
(iv) u is of the form Agb + h where h ∈ N (A)

Proof We know from the proof of Theorem Least Squares and Generalized Inverses that
(i), (ii), and (iv) are equivalent. If (i) holds, then multiplying Au = b on the left by A∗ gives
(iii). On the other hand, multiplying A∗Au = A∗b on the left by A∗g gives Au = AAgb. Thus
(iii) implies (ii). �

We present one last example here to show the usefulness of generalized inverses in statis-
tics. The linear least squares method detailed above can be used to find a function that best
fits a given set of data.

Example Linear Least Squares Function
Consider the Cartesian points (0, 3), (2, 3), (4, 4), (−1, 2). We seek a solution of the form αx+

β = y, that is
[
x 1

] [
α
β

]
= y

We can then form the matrix A using the x -coordinates and a column of 1’s as A =


0 1
2 1
4 1
−1 1


and the vector b using the y-coordinates b =


3
3
4
2

.
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Now we can find A∗, A∗b, A∗A, and(A∗A)−1

A∗ =

[
0 2 4 −1
1 1 1 1

]
A∗b =

[
20
12

]
A∗A =

[
21 5
5 4

]
(A∗A)−1 = 1

59

[
4 −5
−5 21

]
Using the equation A∗Ax = A∗b from the Least Squares Solution proof, we can sim-
ply substitute in to obtain

A∗A

[
α
β

]
= A∗b =

[
21 5
5 4

] [
α
β

]
=

[
20
12

]
and 1

59

[
4 −5
−5 21

] [
20
12

]
=

[
20
59
152
59

]
and the line of best fit is 20

59
x + 152

59
= y.

With that we have shown the usefulness of the generalized inverse in finding the least
squares function for a given set of data. The generalized inverse is a powerful tool and has
even more connections with statistics than we can possibly bring to light in the confines
of this paper. Please consult the sources listed for further reference and additions to the
theorems and techniques provided here.
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