Show *all* of your work and *explain* your answers fully. There is a total of 90 possible points. If you use a calculator or software package on a problem be sure to write down both the input and output.

1. Determine if the set R below is linearly independent. (15 points)

$$R = \left\{ \begin{bmatrix} 1\\3\\-1\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\-2\\3 \end{bmatrix}, \begin{bmatrix} -4\\3\\4\\-5 \end{bmatrix} \right\}$$

Solution: According to Theorem LIVRN, we can answer this question quickly through an analysis of a matrix whose columns are the vectors of R. Specifically, we need the reduced row-echelon form of this matrix,

1	2	-4]		$\left[1 \right]$	0	2]
3	1	3	RREF	0	1	-3
-1	-2	4		0	0	0
2	3	-5		0	0	0

We have n = 3 vectors in R and from the matrix in reduced row-echelon form, we find r = 2 nonzero rows. Since r < n, Theorem LIVRN implies that R is linearly dependent.

2. Either **x** or **y** is an element of $\langle Q \rangle$ (but not both). Determine which vector is in $\langle Q \rangle$ and provide convincing evidence for membership in $\langle Q \rangle$. (15 points)

$$Q = \left\{ \begin{bmatrix} 2\\3\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 4\\9\\-5 \end{bmatrix} \right\} \qquad \mathbf{x} = \begin{bmatrix} 3\\6\\-3 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 3\\3\\3 \end{bmatrix}$$

Solution: According to Definition SSCV we ask if there are scalars a_1 , a_2 , a_3 so that

	2		[1]		$\begin{bmatrix} 4 \end{bmatrix}$		[3]	
a_1	3	$+ a_2$	0	$+ a_{3}$	9	=	6	
	-1		1	$+ a_{3}$	$\begin{bmatrix} -5 \end{bmatrix}$		$\begin{bmatrix} -3 \end{bmatrix}$	

By Theorem SLSLC, such scalars will be a solution to the system whose augmented matrix row-reduces as follows,

Γ	2	1	4	3]	$\xrightarrow{\text{RREF}}$	$\left[1 \right]$	0	3	2]
	3	0	9	6	$\xrightarrow{\text{RREF}}$	0	1	-2	-1
L-	-1	1	-5	-3		0	0	0	0

By Theorem RCLS, this system is consistent, so we know there is a solution. a_3 is a free variable, so we can set $a_3 = 0$, and determine that $a_1 = 2$, $a_2 = -1$ is the remainder of a solution. So we can write **x** as a linear combination of the vectors in Q, and this *alone* would be enough evidence to conclude that $\mathbf{x} \in \langle Q \rangle$.

$$(2)\begin{bmatrix}2\\3\\-1\end{bmatrix} + (-1)\begin{bmatrix}1\\0\\1\end{bmatrix} + (0)\begin{bmatrix}4\\9\\-5\end{bmatrix} = \begin{bmatrix}3\\6\\-3\end{bmatrix}$$

A similar analysis for **y** would lead to an inconsistent system, which would be evidence that $\mathbf{y} \notin \langle Q \rangle$.

3. Find a set S so that S is linearly independent and $\mathcal{N}(A) = \langle S \rangle$, where $\mathcal{N}(A)$ is the null space of the matrix A below. (15 points)

$$A = \begin{bmatrix} 2 & 3 & 3 & 1 & 4 \\ 1 & 1 & -1 & -1 & -3 \\ 3 & 2 & -8 & -1 & 1 \end{bmatrix}$$

Solution: A direct application of Theorem BNS will provide the desired set. We require the reduced row-echelon form of A.

$$\begin{bmatrix} 2 & 3 & 3 & 1 & 4 \\ 1 & 1 & -1 & -1 & -3 \\ 3 & 2 & -8 & -1 & 1 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 0 & -6 & 0 & 3 \\ 0 & 1 & 5 & 0 & -2 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

The non-pivot columns have indicies $F = \{3, 5\}$. We build the desired set in two steps, first placing the requisite zeros and ones in locations based on F, then placing the negatives of the entries of columns 3 and 5 in the proper locations. This is all specified in Theorem BNS.

$$S = \left\{ \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} 6\\ -5\\ 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} -3\\ 2\\ 0\\ -4\\ 1 \end{bmatrix} \right\}$$

4. Given the set T of column vectors below, find a set S so that S is linearly independent and $\langle S \rangle = \langle T \rangle$. (15 points)

$$T = \left\{ \begin{bmatrix} 1\\-1\\3\\-1 \end{bmatrix}, \begin{bmatrix} 2\\1\\-1\\2 \end{bmatrix}, \begin{bmatrix} -4\\1\\-5\\0 \end{bmatrix}, \begin{bmatrix} 7\\-1\\7\\1 \end{bmatrix} \right\}$$

Solution: Theorem BS will provide the desired answer, and requires examination of the reduced row-echelon form of a matrix whose columns are the vectors of T.

1	2	-4	7	$\xrightarrow{\text{RREF}}$	$\left[1 \right]$	0	-2	3
-1	1	1	-1	RREF	0	1	-1	2
3	-1	-5	7		0	0	0	0
-1	2	0	1		0	0	0	0

Since pivot columns reside in columns with indices $D = \{1, 2\}$, Theorem BS says we can form S with the first two vectors of T, so

$$T = \left\{ \begin{bmatrix} 1\\-1\\3\\-1 \end{bmatrix}, \begin{bmatrix} 2\\1\\-1\\2 \end{bmatrix} \right\}$$

5. Suppose that $\alpha \in \mathbb{C}$, $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$. Prove that $\alpha (\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$. (Note: this is Property DVAC of Theorem VSPCV, so you are being asked to do more than just quote this result from the book.) (15 points)

Solution: This result says that two vectors are equal, so we must appeal to Definition CVE and look at each entry of these vectors in general,

$[\alpha \left(\mathbf{x} + \mathbf{y} \right)]_i = \alpha \left[\mathbf{x} + \mathbf{y} \right]_i$	Definition CVSM
$= \alpha \left(\left[\mathbf{x} \right]_i + \left[\mathbf{y} \right]_i \right)$	Definition CVA
$= \alpha \left[\mathbf{x} \right]_i + \alpha \left[\mathbf{y} \right]_i$	Property DCN
$= [\alpha \mathbf{x}]_i + [\alpha \mathbf{y}]_i$	Definition CVSM
$= [\alpha \mathbf{x} + \alpha \mathbf{y}]_i$	Definition CVA

Since the two vectors agree in every entry, by Definition CVE, we say α ($\mathbf{x} + \mathbf{y}$) = $\alpha \mathbf{x} + \alpha \mathbf{y}$.

6. Suppose that $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^n, \alpha, \beta \in \mathbb{C}$ and \mathbf{u} is orthogonal to both \mathbf{v} and \mathbf{w} . Prove that \mathbf{u} is orthogonal to $\alpha \mathbf{v} + \beta \mathbf{w}$. (15 points)

Solution: Vectors are orthogonal if their inner product is zero, so we compute,

$\langle \alpha \mathbf{v} + \beta \mathbf{w}, \mathbf{u} \rangle = \langle \alpha \mathbf{v}, \mathbf{u} \rangle + \langle \beta \mathbf{w}, \mathbf{u} \rangle$	Theorem IPVA
$= \alpha \left< \mathbf{v}, \mathbf{u} \right> + \beta \left< \mathbf{w}, \mathbf{u} \right>$	Theorem IPSM
$=\alpha\left(0\right)+\beta\left(0\right)$	Definition OV
= 0	

So by Definition OV, **u** and $\alpha \mathbf{v} + \beta \mathbf{w}$ are an orthogonal pair of vectors.