
Math 290 Name: Key Dr. Beezer
Quiz M Spring 2008

Show all of your work and explain your answers fully. There is a total of 100 possible points. If you use a calculator
or software package on a problem be sure to write down both the input and output.

1. For the system below, compute the inverse of the nonsingular coefficient matrix by row-reducing the appro-
priate 2× 4 matrix. Then use this inverse to compute the solution set of the system. (10 points)

3x1 + 2x2 = 5
11x1 + 7x2 = 19

Solution: Augment the coefficient matrix of the system with the 2× 2 identity matrix. By the combination
of Theorem CINM and Theorem OSIS, we can find the inverse from the row-reduced version of this matrix,[

3 2 1 0
11 7 0 1

]
RREF−−−−→

[
1 0 −7 2
0 1 11 −3

]
If we use Theorem SLEMM to rewrite the system as Ax = b, then Theorem SNCM tells us the solution set
contains a single vector,

x = A−1b =
[
−7 2
11 −3

] [
5
19

]
=
[

3
−2

]

2. For the matrix A below, demonstrate the use of Theorem FS to compute the four indicated sets. (30 points)

A =

−5 13
2 −5
−1 3


(a) Null space of A, N (A).

Solution: For all four parts of this problem, we need the extended echelon form of A (Definition EEF), and
we extract the submatrices C and L.−5 13 1 0 0

2 −5 0 1 0
−1 3 0 0 1

 RREF−−−−→

 1 0 0 3 5
0 1 0 1 2
0 0 1 2 −1

 C =
[

1 0
0 1

]
L =

[
1 2 −1

]

Using Theorem FS and Theorem BNS, N (A) = N (C) =
{[

0
0

]}
.

(b) Row space of A, R(A).

Solution: Using Theorem FS and Theorem BRS, R(A) = R(C) =
〈{[

1
0

]
,

[
0
1

]}〉
= C2.

(c) Column space of A, C(A).

Solution: Using Theorem FS and Theorem BNS, C(A) = N (L) =

〈
−2

1
0

 ,
1

0
1


〉

.



(d) Left null space of A, L(A).

Solution: Using Theorem FS and Theorem BRS, L(A) = R(L) =

〈
 1

2
−1


〉

.

For Problems 3 and 4 use the following vectors and matrix. 15 points for each problem.

w =


2
−1
0
1

 y =


−1
0
−2
1
2

 A =


2 −1 1 0 −3
−3 2 0 −1 4
4 −3 −1 2 −5
−5 4 2 −3 6



3. (a) Prove directly (without using other parts of this problem) that w is an element of the column space of
A, w ∈ C(A).

Solution: By Theorem CSCS, w ∈ C(A) if and only if LS(A, w) is consistent. We row-reduce the augmented
matrix of this system

[A | w] RREF−−−−→


1 0 2 −1 −2 3
0 1 3 −2 −1 4
0 0 0 0 0 0
0 0 0 0 0 0


By Theorem RCLS this system is consistent, so w ∈ C(A).

(b) Find a linearly independent set S such that the span of S is the column space of A, C(A) = 〈S〉.

Solution: We can see the reduced row-echelon form of A in the first 5 columns of the row-reduced matrix
in the previous part of this problem. In particular, D = {1, 2}. By Theorem BCS we can take columns 1
and 2 of A as column vectors and this set will fulfill the requirements of the question.

S =




2
−3
4
−5

 ,

−1
2
3
4




(c) Write w as a linear combination of the elements of S.

Solution: We can use the row-reduced matrix in part (a) to construct solutions to the linear system
LS(A, w). By Theorem SLSLC these solutions will give rise to linear combinations of the columns of A that
equal x. In this case we want a linear combination of just the first two columns of A, so we want the scalars
for the last three columns to be zero, i.e. x3 = x4 = x5 = 0. Not coincidentally, the last three variables in
the system are free, so we can just choose them to be zero. The result is that the first two variables are
x1 = 3 and x2 = 4, so we have

3


2
−3
4
−5

+ 4


−1
2
3
4

 =


2
−1
0
1



2



4. (a) Prove directly (without using other parts of this problem) that y is an element of the row space of A,
y ∈ R(A).

Solution: By Definition RSM, y ∈ R(A) if and only if y ∈ C
(
At
)
. We can test this by examining the

consistency of LS
(
At, y

)
(Theorem CSCS). We row-reduce the augmented matrix,

[
At
∣∣ y] RREF−−−−→


1 0 −1 2 −2
0 1 −2 3 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


By Theorem RCLS this system is consistent, so y ∈ R(A).

(b) Find a linearly independent set T such that the span of T is the row space of A, R(A) = 〈T 〉.

Solution: Theorem BRS tells us we can row-reduce A, and take the nonzero rows as column vectors to form
T with the requested properties.

A
RREF−−−−→


1 0 2 −1 −2
0 1 3 −2 −1
0 0 0 0 0
0 0 0 0 0

 T =




1
0
2
−1
−2

 ,


0
1
3
−2
−1




(c) Write y as a linear combination of the elements of T .

Solution: The first two entries of the each vector in T will suggest the scalars a1 = −1, a1 = 0,
−1
0
−2
1
2

 = (−1)


1
0
2
−1
−2

+ 0


0
1
3
−2
−1



5. Suppose that A is an m× n matrix and α ∈ C is a scalar. Prove that (αA)t = αAt (Note: this is Theorem
TMSM, so you are being asked to do more than just quote this result from the book.) (15 points)

Solution: See the proof of Theorem TMSM in the book.

6. Prove the converse of Theorem NPNT: If A and B are nonsingular matrices of size n, then AB is a nonsingular
matrix of size n. (15 points)

Solution: Suppose that x ∈ Cn is a solution to LS(AB, 0). Then

0 = (AB) x Theorem SLEMM
= A (Bx) Theorem MMA

By Theorem SLEMM, Bx is a solution to LS(A, 0), and by the definition of a nonsingular matrix (Definition
NM), we conclude that Bx = 0. Now, by an entirely similar argument, the nonsingularity of B forces us
to conclude that x = 0. So the only solution to LS(AB, 0) is the zero vector and we conclude that AB is
nonsingular.
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