Show *all* of your work and *explain* your answers fully. There is a total of 90 possible points. If you use a calculator or software package on a problem be sure to write down both the input and output.

1. Consider the linear transformation T below, where P_2 is the vector space of polynomials with degree at most 2. (30 points)

$$T: P_2 \mapsto \mathbb{C}^4, \qquad T\left(a + bx + cx^2\right) = \begin{bmatrix} 2a + 3b\\ a + b - c\\ 4a + 5b - 2c\\ a - b - 5c \end{bmatrix}$$

(a) Find a basis for the kernel of T, $\mathcal{K}(T)$.

Solution: The kernel is defined as elements of the domain (polynomials) that T sends to the zero vector of the codomain (column vectors). So begin with this condition,

$$\begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} = T(a+bx+cx^{2}) = \begin{bmatrix} 2a+3b\\a+b-c\\4a+5b-2c\\a-b-5c \end{bmatrix}$$

By the definition of column vector equality, Definition CVE, this can be expressed as a homogeneous system of four equations in three variables. With an eye to solving this system, we row-reduce the coefficient matrix,

[2	3	0]		$\left[1 \right]$	0	-3
1	1	-1	RREF	$\overline{0}$	1	2
4	5	-2	\rightarrow	0	0	0
[1	-1	-5		0	0	0

From this we can identify solutions for a, b and c to be of the form a = 3c, b = -2c where c can take on any value (it is a free variable for the system). So kernel vectors are polynomials $3c + (-2c)x + cx^2 = c(3-2x+x^2)$ for all possible values of the scalar c. In particular, we can write,

$$\mathcal{K}(T) = \left\langle \left\{ 3 - 2x + x^2 \right\} \right\rangle$$

(b) Find a basis for the range of T, $\mathcal{R}(T)$.

Solution: Theorem SSRLT gives a quick and easy way to build a spanning set of the range — just input the vectors of a spanning set for the domain and collect the outputs in a set. We can choose any spanning set of P_2 but a basis will be most efficient, and a nice basis will be even better. How about $B = \{1, x, x^2\}$? Then our spanning set for the range is

$$\left\{ T\left(1\right), \, T\left(x\right), \, T\left(x^{2}\right) \right\} = \left\{ \begin{bmatrix} 2\\1\\4\\1 \end{bmatrix}, \, \begin{bmatrix} 3\\1\\5\\-1 \end{bmatrix}, \, \begin{bmatrix} 0\\-1\\-2\\-5 \end{bmatrix} \right\}$$

There is no guarantee this set is a basis, as it may not be a linearly independent set. To replace the spanning set by a linearly independent spanning set, we can appeal to Theorem BCS since these vectors are column vectors. If we make these three vectors the columns of a matrix, we (not coincidentally) arrive at the same matrix in part (a). Since the matrix row-reduces to pivot columns with indices $D = \{1, 2\}$, we can just "keep" the first two columns as a basis. So we can write,

$$\mathcal{R}(T) = \left\langle \left\{ \begin{bmatrix} 2\\1\\4\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\5\\-1 \end{bmatrix} \right\} \right\rangle$$

(c) Compute the pre-image
$$T^{-1} \begin{pmatrix} 5\\ 2\\ 3\\ 0 \end{bmatrix}$$
.

Solution: This question asks for those polynomials $a + bx + cx^2$ such that $T(a + bx + cx^2) = \begin{bmatrix} 5\\2\\3\\0 \end{bmatrix}$. This

condition is

$$\begin{bmatrix} 5\\2\\3\\0 \end{bmatrix} = T(a+bx+cx^2) = \begin{bmatrix} 2a+3b\\a+b-c\\4a+5b-2c\\a-b-5c \end{bmatrix}$$

Equality of polynomials leads us to a system of four equations in three variables. To solve we row-reduce the augmented matrix,

[2	3	0	5]		$\lceil 1 \rceil$	0	-3	0]
1	1	-1	2	RREF	0	1	2	0
4	5	-2	3	\longrightarrow	0	0	0	$\left 1\right $
[1	-1	-5	0	$\xrightarrow{\text{RREF}}$	0	0	0	0

As an inconsistent system (Theorem RCLS) with no solutions, the preimage is empty.

(d) Compute the pre-image
$$T^{-1} \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 3 \\ 3 \end{bmatrix} \end{pmatrix}$$
.

Solution: This question asks for those polynomials $a + bx + cx^2$ such that $T(a + bx + cx^2) = \begin{bmatrix} 1\\1\\3\\3 \end{bmatrix}$. This

condition is

$$\begin{bmatrix} 1\\1\\3\\3 \end{bmatrix} = T(a+bx+cx^2) = \begin{bmatrix} 2a+3b\\a+b-c\\4a+5b-2c\\a-b-5c \end{bmatrix}$$

Equality of polynomials leads us to a system of four equations in three variables. To solve we row-reduce the augmented matrix,

$$\begin{bmatrix} 2 & 3 & 0 & 1 \\ 1 & 1 & -1 & 1 \\ 4 & 5 & -2 & 3 \\ 1 & -1 & -5 & 3 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

A single solution a = 2, b = -1, c = 0 implies that the polynomial 2 - x is in the pre-image. We can combine this one element with the kernel from part (a) by Theorem KPI to obtain

$$T^{-1}\left(\begin{bmatrix}1\\1\\3\\3\end{bmatrix}\right) = (2-x) + \mathcal{K}(T) = (2-x) + \left\langle \left\{3 - 2x + x^2\right\} \right\rangle$$

2. Consider the linear transformation S below, where P_2 is the vector space of polynomials with degree at most 2. (30 points)

$$S: P_2 \mapsto P_2, \qquad S(a + bx + x^2) = (a + 2b + c) + (2a + 3b + 3c)x + (a + b + c)x^2$$

(a) Establish that S is injective.

. _ _ .

Solution: Examination of the kernel can help answer this question quickly. Membership of the polynomial $a + bx + cx^2$ in $\mathcal{K}(S)$ is equivalent to the condition,

$$0 + 0x + 0x^{2} = S(a + bx + cx^{2}) = (a + 2b + c) + (2a + 3b + 3c)x + (a + b + c)x^{2}$$

This polynomial equality leads to a homogeneous system of three equations in three variables, where the coefficient matrix row-reduces as,

[1	2	1]		1	0	0]
2	3	3	$\xrightarrow{\text{RREF}}$	0	1	0
$\lfloor 1$	1	1		0	0	1

The only solution is a = b = c = 0, so the only polynomial in the kernel is the zero polynomial. Since the kernel is trivial, $\mathcal{K}(S) = \{\mathbf{0}\}$, by Theorem KILT, S is injective.

(b) Establish that S is surjective.

Solution: Since the kernel is trivial, the nullity is zero, n(S) = 0. We can compute the rank of S,

$r\left(S\right) = \dim\left(P_2\right) - n\left(S\right)$	Theorem RPNDD
= 3 - 0 = 3	Theorem DP

By Theorem EDYES we can conclude the set equality $\mathcal{R}(S) = P_2$, and then by Theorem RSLT, we conclude that S is surjective.

(c) Explain how you can now easily determine that S is invertible.

Solution: Theorem ILTIS says that an injective and surjective linear transformation is invertible.

(d) Find a formula for S^{-1} .

Solution: Our strategy is to choose a basis for the codomain, find the pre-image of each of these elements and then find the linear transformation guaranteed by Theorem LTDB.

Our choice of basis will be $C = \{1, x, x^2\}$. As an example of the necessary computations, we will find the pre-image of $x, S^{-1}(x)$. $a + bx + cx^2 \in S^{-1}(x)$ is equivalent to the condition,

$$x = 0 + 1x + 0x^{2} = S(a + bx + cx^{2}) = (a + 2b + c) + (2a + 3b + 3c)x + (a + b + c)x^{2}$$

This polynomial equality leads to a system of three equations in three variables, where the augmented matrix row-reduces as,

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 3 & 3 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

So the lone element of the pre-image is $-1 + x^2$, and we define the inverse linear transformation's value at x to be $S^{-1}(x) = -1 + x^2$.

For the other two basis elements, the computations are similar, except the vectors of constants in the reultant systems are a bit different for each. We would find,

$$S^{-1}(1) = x - x^2 \qquad S^{-1}(x^2) = 3 - x - x^2$$

Now, in the spirit of Theorem LTDB, we can determine a formula for the value of S^{-1} at any input,

$$S^{-1}(a + bx + cx^{2}) = aS^{-1}(1) + bS^{-1}(x) + cS^{-1}(x^{2})$$

Theorem LTLC
$$= a(x - x^{2}) + b(-1 + x^{2}) + c(3 - x - x^{2})$$

$$= (-b + 3c) + (a - c)x + (-a + b - c)x^{2}$$

3. Suppose U is a vector space. A linear transformation $P: U \mapsto U$ is **idempotent** if $P \circ P = P$. Create and verify an example of a non-trivial idempotent linear transformation. Here, by trivial we mean any example that is the identity linear transformation on U, I_U , or a linear transformation that takes every input to the zero vector, $P(\mathbf{u}) = \mathbf{0}$ for all $\mathbf{u} \in U$. (15 points)

Solution: One possible example is, in a way, a mixture of two trivial examples. Consider

$$P \colon \mathbb{C}^2 \mapsto \mathbb{C}^2, \qquad P\left(\begin{bmatrix}a\\b\end{bmatrix}\right) = \begin{bmatrix}a\\0\end{bmatrix}$$

To verify, for all $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{C}^2$,

$$(P \circ P)\left(\begin{bmatrix} a \\ b \end{bmatrix} \right) = P\left(P\left(\begin{bmatrix} a \\ b \end{bmatrix} \right) \right)$$
$$= P\left(\begin{bmatrix} a \\ 0 \end{bmatrix} \right)$$
$$= \begin{bmatrix} a \\ 0 \end{bmatrix}$$
$$= P\left(\begin{bmatrix} a \\ b \end{bmatrix} \right)$$

So, as functions, $P \circ P$ and P are equal.

4. Suppose that B is an $m \times n$ matrix and define the linear transformation $Q: \mathbb{C}^n \mapsto \mathbb{C}^m$ by $Q(\mathbf{x}) = B\mathbf{x}$. Give a careful proof that the null space of B is the kernel of $Q, \mathcal{N}(B) = \mathcal{K}(Q)$. (15 points)

Solution: See Solution ILT.T20