
Math 290 Name: Key Dr. Beezer
Quiz R Spring 2008

Show all of your work and explain your answers fully. There is a total of 90 possible points. If you use a calculator
or software package on a problem be sure to write down both the input and output.

1. Consider the linear transformation T below, where P1 is the vector space of polynomials with degree at most
1. (35 points)

T : C2 7→ P1, T

([
a
b

])
= (2a+ b) + (a− b)x

(a) Compute the matrix representation of T , MT
B,C , relative to the bases B =

{[
1
0

]
,

[
0
1

]}
and C = {1, x}.

Solution: Following Definition MR we compute

ρC

(
T

([
1
0

]))
= ρC (2 + x) =

[
2
1

]
ρC

(
T

([
0
1

]))
= ρC (1− x) =

[
1
−1

]

So the representation is

MT
B,C =

[
2 1
1 −1

]

(b) Compute the matrix representation of T , MT
D,E , relative to the bases D =

{[
2
1

]
,

[
3
2

]}
and E =

{1, 1 + x}.

Solution: Following Definition MR we compute

ρE

(
T

([
2
1

]))
= ρE (5 + x) = ρE (4(1) + 1(1 + x)) =

[
4
1

]
ρE

(
T

([
3
2

]))
= ρE (8 + x) = ρE (7(1) + 1(1 + x)) =

[
7
1

]

So the representation is

MT
D,E =

[
4 7
1 1

]

(c) Using the definition of T , compute T
([

1
2

])
.

Solution:

T

([
1
2

])
= (2(1) + 2) + (1− 2)x = 4− x

(d) Compute T
([

1
2

])
with Theorem FTMR by computing ρ−1

C

(
MT

B,CρB

([
1
2

]))
.



Solution:

ρ−1
C

(
MT

B,CρB

([
1
2

]))
= ρ−1

C

([
2 1
1 −1

] [
1
2

])
= ρ−1

C

([
4
−1

])
= 4(1) + (−1)x = 4− x

(e) Compute T
([

1
2

])
with Theorem FTMR by computing ρ−1

E

(
MT

D,EρD

([
1
2

]))
.

Solution:

ρ−1
E

(
MT

D,EρD

([
1
2

]))
= ρ−1

E

(
MT

D,EρD

(
(−4)

[
2
1

]
+ 3

[
3
2

]))
= ρ−1

E

([
4 7
1 1

] [
−4
3

])
= ρ−1

E

([
5
−1

])
= 5(1) + (−1)(1 + x) = 4− x

2. Consider the linear transformation S below, where P2 is the vector space of polynomials with degree at most
2. (30 points)

S : P2 7→ P2, S
(
a+ bx+ x2

)
= (11a− 24b+ 12c) + (6a− 13b+ 6c)x+ (2a− 4b+ c)x2

(a) Build a matrix representation of S, using the same basis for both the domain and codomain.

Solution: With the freedom to pick any basis, we will keep it as simple as possible: B
{

1, x, x2
}

. Following
Definition MR.

ρB (S (1)) = ρB

(
11 + 6x+ 2x2

)
=

11
6
2


ρB (S (x)) = ρB

(
−24− 13x− 4x2

)
=

−24
−13
−4


ρB

(
S
(
x2
))

= ρB

(
12 + 6x+ x2

)
=

12
6
1


So the matrix representation is

MS
B,B =

11 −24 12
6 −13 6
2 −4 1



(b) Find a basis E for P2 such that the matrix representation of S relative to E, MS
E,E , is a diagonal

representation.

Solution: The techniques illustrated in Subsection CB.CELT show that we can get eigenvalues and eigen-
vectors from any matrix representation. Eigenvalues are eigenvalues, but eigenvectors need to be interpreted

2



(“un-coordinatized”) relative to the choice of basis used in the representation. A basis of eigenvectors will
provide the requested diagonal representation. So we use techniques from Chapter E to get the eigenvalues
and eigenvectors of the matrix representation in part (a). For convenience, set M = MS

B,B.

λ = 1 M − 1I3 =

10 −24 12
6 −14 6
2 −4 0

 RREF−−−−→

 1 0 −6
0 1 −3
0 0 0


EM (1) = N (M − I3) =

〈
6

3
1


〉

λ = −1 M − (−1)I3 =

12 −24 12
6 −12 6
2 −4 2

 RREF−−−−→

 1 −2 1
0 0 0
0 0 0


EM (−1) = N (M − (−1)I3) =

〈
2

1
0

 ,
−1

0
1


〉

We can infer from the above that the algebraic and geometric multiplicity are equal for each eigenvalue, and
from the proof of Theorem DMFE the three basis vectors above will together comprise a basis of C3. We
just need to convert these column vectors into polynomials by un-coordinatizing relative to B,

ρ−1
B

6
3
1

 = 6 + 3x+ x2 ρ−1
B

2
1
0

 = 2 + x ρ−1
B

−1
0
1

 = −1 + x2

So E =
{

6 + 3x+ x2, 2 + x, −1 + x2
}

.

(c) S is invertible (you may assume this). Use the matrix representation in part (a) to construct a formula
for S−1.

Solution:

S−1
(
a+ bx+ cx2

)
= ρ−1

B

(
MS−1

B,BρB

(
a+ bx+ cx2

))
Theorem FTMR

= ρ−1
B

((
MS

B,B

)−1
ρB

(
a+ bx+ cx2

))
Theorem IMR

= ρ−1
B


11 −24 12

6 −13 6
2 −4 1

−1 ab
c




= ρ−1
B

11 −24 12
6 −13 6
2 −4 1

ab
c


= ρ−1

B

11a− 24b+ 12c
6a− 13b+ 6c
2a− 4b+ c


= (11a− 24b+ 12c) + (6a− 13b+ 6c)x+ (2a− 4b+ c)x2

It may be a little startling to arrive at S = S−1. Not 100% a coincidence — it’s an artifact of keeping the
computations simple.
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3. Consider the linear transformation Q below. (25 points)

Q : M22 7→ P2, Q

([
a b
c d

])
= (5a+ 5b+ 10d) + (−2b− 2c− 2d)x+ (a+ 2b+ c+ 3d)x2

(a) Find the matrix representation of Q relative to the bases B and C, MQ
B,C .

B =
{[

1 0
0 0

]
,

[
−1 1
0 0

]
,

[
0 −2
1 0

]
,

[
0 1
−1 1

]}
C =

{
1, 2 + x, 1− x+ x2

}
Solution:

ρC

(
Q

([
1 0
0 0

]))
= ρC

(
5 + 0x+ x2

)
= ρC

(
2 (1) + 1 (2 + x) + 1

(
1− x+ x2

))
=

2
1
1


ρC

(
Q

([
−1 1
0 0

]))
= ρC

(
0− 2x+ x2

)
= ρC

(
1 (1) + (−1) (2 + x) + 1

(
1− x+ x2

))
=

 1
−1
1


ρC

(
Q

([
0 −2
1 0

]))
= ρC

(
−10 + 2x+ (−3)x2

)
= ρC

(
(−5) (1) + (−1) (2 + x) + (−3)

(
1− x+ x2

))
=

−5
−1
−3


ρC

(
Q

([
0 1
−1 1

]))
= ρC

(
15− 2x+ 4x2

)
= ρC

(
7 (1) + (2) (2 + x) + 4

(
1− x+ x2

))
=

7
2
4


So the representation is

MQ
B,C =

2 1 −5 7
1 −1 −1 2
1 1 −3 4


(b) Use the matrix representation from part (a) to compute a basis for the kernel of Q, K(Q).

Solution: By Theorem KNSI the kernel of Q is isomorphic to the null space of a matrix representation
via the isomorphism that is vector representation relative to the basis chosen for the domain. We will turn
this around and compute the null space of the matrix representation (via Theorem BNS) and then use the
inverse of the isomorphism, which is “un-coordinatization.”

Row-reduce the matrix representation from part (a),

MQ
B,C

RREF−−−−→

 1 0 −2 3
0 1 −1 1
0 0 0 0


So, by Theorem BNS, a basis for the null space is


2
1
1
0

 ,

−3
−1
0
1
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These two vectors are not elements of the domain, they are vector representations of matrices in M22 relative
to the basis B, to get a basis of the kernel we will apply ρ−1

B , to obtain the two basis vectors,

ρ−1
B




2
1
1
0


 = 2

[
1 0
0 0

]
+ 1

[
−1 1
0 0

]
+ 1

[
0 −2
1 0

]
+ 0

[
0 1
−1 1

]
=
[
1 −1
1 0

]

ρ−1
B



−3
−1
0
1


 = (−3)

[
1 0
0 0

]
+ (−1)

[
−1 1
0 0

]
+ 0

[
0 −2
1 0

]
+ 1

[
0 1
−1 1

]
=
[
−2 0
−1 1

]

(c) Perform a partial check on your answer in (b) by evaluating Q with a vector from your basis.

Solution:

Q

([
−2 0
−1 1

])
= (5(−2) + 5(0) + 10(1)) + (−2(0)− 2(−1)− 2(1))x+ ((−2) + 2(0) + (−1) + 3(1))x2

= 0 + 0x+ 0x2
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