Name: Key

Show *all* of your work and *explain* your answers fully. There is a total of 90 possible points. If you use a calculator or software package on a problem be sure to write down both the input and output.

1. Give the vector \mathbf{y} and the set $S \subseteq \mathbb{C}^4$ below, determine if $\mathbf{y} \in S$. (15 points)

$$\mathbf{y} = \begin{bmatrix} 19\\29\\2\\10 \end{bmatrix} \qquad \qquad S = \left\{ \begin{bmatrix} 2\\-2\\7\\-7 \end{bmatrix}, \begin{bmatrix} 0\\-4\\4\\-8 \end{bmatrix}, \begin{bmatrix} 5\\7\\0\\0 \end{bmatrix} \right\}$$

Solution: According to Definition SSCV, the vector \mathbf{y} will be a member of the span, $\langle S \rangle$, if there are scalars a_1, a_2, a_3 such that

[19]		[2]		[0]		$\lceil 5 \rceil$
29		$\left -2\right $		-4		7
2	$=a_1$	7	$+ a_2$	4	$+ a_{3}$	0
$\lfloor 10 \rfloor$		$\lfloor -7 \rfloor$		$\lfloor -8 \rfloor$		0

By Theorem SLSLC a solution to this vector equation is a solution to the linear system with the augmented matrix below.

ſ	2	0	5	19		1	0	0	2]
	-2	-4	7	29	$\xrightarrow{\text{RREF}}$	0	1	0	-3
	7	4	0	2	\rightarrow	0	0	1	3
	$^{-7}$	-8	0	10		0	0	0	0

With no leading 1 in the final column of the row-equivalent matrix in reduced row-echelon form, we know the system has a solution (Theorem RCLS), and thus \mathbf{y} is a member of the span. Notice that to answer the yes/no question about membership, it is not necessary to actually find a solution (even if it is obvious here).

2. Determine if the set $Q \subseteq \mathbb{C}^4$ below is linearly independent. (15 points)

$$Q = \left\{ \begin{bmatrix} -4\\ -3\\ 0\\ 3 \end{bmatrix}, \begin{bmatrix} 6\\ 8\\ -3\\ 6 \end{bmatrix}, \begin{bmatrix} 3\\ 4\\ -2\\ 2 \end{bmatrix}, \begin{bmatrix} 1\\ 5\\ 0\\ 4 \end{bmatrix} \right\}$$

Solution: The four vectors in Q, as columns of a matrix, will form a 4×4 matrix, A. Thus, by Theorem NME2, Q is linearly independent if and only if A is nonsingular. So we form A and find the row-equivalent matrix in reduced row-echelon form,

$$A = \begin{bmatrix} -4 & 6 & 3 & 1 \\ -3 & 8 & 4 & 5 \\ 0 & -3 & -2 & 0 \\ 3 & 6 & 2 & 4 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since A row-reduces to the 4×4 identity matrix I_4 , Theorem NMRRI tells us A is nonsingular and thus Q is linearly independent.

3. Express the null space of the matrix A below as the span of a linearly independent set of vectors. (15 points)

$$A = \begin{bmatrix} 3 & 4 & 3 & 6 & 5 \\ 3 & 3 & 2 & 5 & 5 \\ 4 & 0 & 3 & 20 & -2 \end{bmatrix}$$

Solution: Theorem BNS gives an explicit description of the vectors needed for such a set, once you have a row-equivalent matrix in reduced row-echelon form,

[3	4	3	6	5]	$\xrightarrow{\text{RREF}}$	$\lceil 1 \rceil$	0	0	2	1]
3	3	2	5	5	$\xrightarrow{\text{RREF}}$	0	1	0	-3	2
4	0	3	20	-2		0	0	1	4	-2

With n - r = 5 - 3 non-pivot columns, we will construct two vectors. We demonstrate this construction in two steps.

$$S = \{\mathbf{z}_1, \, \mathbf{z}_2\} = \left\{ \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} -2\\ 3\\ -4\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} -1\\ -2\\ 2\\ 0\\ 1 \end{bmatrix} \right\}$$

Then an appeal to Theorem BNS gives us the result that S is linearly independent, and $\mathcal{N}(A) = \langle S \rangle$. Notice that none of the above makes any reference to a system of equations. You could describe the null space as the solution set to a homogeneous system, then write the solutions using vectors from Theorem VFSLS, but that would be more work than is necessary.

4. Given the set $T \subseteq \mathbb{C}^3$ below, find a set R that is a subset of T such that (a) R is linearly independent, (b) $\langle R \rangle = \langle T \rangle$. (15 points)

1	′ [1]		$\begin{bmatrix} -3 \end{bmatrix}$		$\left[0 \right]$		$\begin{bmatrix} 0 \end{bmatrix}$		$\lceil 2 \rceil$)	
$T = \langle$	3	,	-9	,	1	,	0	,	3		}
$T = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\lfloor 2 \rfloor$		[-6]		1		4		9	J	

Solution: Theorem BNS gives us all this with little effort. The theorem requires making the vectors the column of a matrix and finding the row-equivalent matrix in reduced row-echelon form.

[1	-3	0	0	2]		$\lceil 1 \rceil$	-3	0	0	2]
3	-9	1	0	3	$\xrightarrow{\text{RREF}}$	0	0	1	0	-3
$\lfloor 2$	-6	1	4	9	$\xrightarrow{\text{RREF}}$	0	0	0	1	$2 \rfloor$

We see the pivot columns as those with indices in $D = \{1, 3, 4\}$. Theorem BS says we can grab the first, third and fourth vectors from the set, to wit

1	[1]		$\begin{bmatrix} 0 \end{bmatrix}$		[0]		
$R = \langle$	$\begin{bmatrix} 1\\ 3\\ 2 \end{bmatrix}$,	1 1	,	0		þ
l	$\lfloor 2 \rfloor$		$\lfloor 1 \rfloor$		4	J	

and R will be linearly independent with $\langle R \rangle = \langle T \rangle$.

5. Give a careful proof of the following equality for vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^n$. (15 points)

$$\langle \mathbf{u} + \mathbf{v}, \, \mathbf{w} \rangle = \langle \mathbf{u}, \, \mathbf{w} \rangle + \langle \mathbf{v}, \, \mathbf{w} \rangle$$

Solution:

$$\begin{split} \langle \mathbf{u} + \mathbf{v}, \, \mathbf{w} \rangle &= \sum_{i=1}^{n} \left[\mathbf{u} + \mathbf{v} \right]_{i} \overline{[\mathbf{w}]_{i}} & \text{Definition IP} \\ &= \sum_{i=1}^{n} \left(\left[\mathbf{u} \right]_{i} + \left[\mathbf{u} \right]_{i} \right) \overline{[\mathbf{w}]_{i}} & \text{Definition CVA} \\ &= \sum_{i=1}^{n} \left[\mathbf{u} \right]_{i} \overline{[\mathbf{w}]_{i}} + \left[\mathbf{u} \right]_{i} \overline{[\mathbf{w}]_{i}} & \text{Property DCN} \\ &= \sum_{i=1}^{n} \left[\mathbf{u} \right]_{i} \overline{[\mathbf{w}]_{i}} + \sum_{i=1}^{n} \left[\mathbf{u} \right]_{i} \overline{[\mathbf{w}]_{i}} & \text{Property CACN} \\ &= \langle \mathbf{u}, \, \mathbf{w} \rangle + \langle \mathbf{v}, \, \mathbf{w} \rangle & \text{Definition IP} \end{split}$$

6. Suppose that $S = {\mathbf{w}, \mathbf{x}, \mathbf{y}} \subseteq \mathbb{C}^n$ is a linearly independent set of vectors. Determine if the set $T = {2\mathbf{w} + 3\mathbf{x}, (-1)\mathbf{x} + 2\mathbf{y}, 2\mathbf{w} + 2\mathbf{x} + 2\mathbf{y}}$ is linearly independent. (15 points)

Solution: Begin with a relation of linear dependence on T,

$$\mathbf{0} = a_1(2\mathbf{w} + 3\mathbf{x}) + a_2((-1)\mathbf{x} + 2\mathbf{y}) + a_3(2\mathbf{w} + 2\mathbf{x} + 2\mathbf{y})$$

and rearrange using properties in Theorem VSPCV,

 $\mathbf{0} = (2a_1 + 2a_3)\mathbf{w} + (3a_1 + (-1)a_2 + 2a_3)\mathbf{x} + (2a_2 + 2a_3)\mathbf{y}$

Because S is linearly independent, we are forced to conclude the following equations (Definition LICV), which together form a homogeneous system of equations.

$$2a_1 + 2a_3 = 0$$

$$3a_1 + (-1)a_2 + 2a_3 = 0$$

$$2a_2 + 2a_3 = 0$$

A nontrivial solution to this system is $a_1 = 1$, $a_2 = 1$, $a_3 = -1$, which is enough to establish that T is linearly dependent (Definition LICV).