Show all of your work and explain your answers fully. There is a total of 100 possible points. If you use a calculator or software package on a problem be sure to write down both the input and output.

1. Solve the following system of equations using the inverse of a matrix. No credit will be given for solutions found with other methods. (15 points)

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{4} & =0 \\
x_{1}+3 x_{2}-x_{3}+3 x_{4} & =6 \\
2 x_{1}+4 x_{2}+x_{3}+x_{4} & =-5 \\
x_{1}+4 x_{2}+4 x_{4} & =6
\end{aligned}
$$

Solution: The coefficient matrix and vector of constants for this system are

$$
A=\left[\begin{array}{cccc}
1 & 2 & 0 & 1 \\
1 & 3 & -1 & 3 \\
2 & 4 & 1 & 1 \\
1 & 4 & 0 & 4
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
0 \\
6 \\
-5 \\
6
\end{array}\right]
$$

So by Theorem SLEMM, the system can be re-expressed as $A \mathbf{x}=\mathbf{b}$, which by Theorem SNCM (presuming the coefficient matrix is nonsingular) has the unique solution

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{cccc}
12 & -4 & -4 & 1 \\
-8 & 3 & 3 & -1 \\
3 & -2 & -1 & 1 \\
5 & -2 & -2 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
6 \\
-5 \\
6
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3 \\
-1 \\
4
\end{array}\right]
$$

2. Determine if the vector $\mathbf{u}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is in the row space of the matrix B below. (15 points)

$$
B=\left[\begin{array}{ccc}
2 & -1 & 3 \\
1 & 4 & 2 \\
3 & 3 & 5
\end{array}\right]
$$

Solution: Notice that \mathbf{u} is written as a column vector and the question is about membership in the row space.

$$
\mathbf{u} \in \mathcal{R}(B) \Longleftrightarrow \mathbf{u} \in \mathcal{C}\left(B^{t}\right) \Longleftrightarrow \mathcal{L S}\left(B^{t}, \mathbf{u}\right) \text { is consistent }
$$

So we consider the consistency of this system by row reducing the augmented matrix,

$$
\left[\begin{array}{cccc}
2 & 1 & 3 & 1 \\
-1 & 4 & 3 & 1 \\
3 & 2 & 5 & 1
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & \boxed{1} & 1 & 0 \\
0 & 0 & 0 & \boxed{1}
\end{array}\right]
$$

By Theorem RCLS this system is inconsistent, so \mathbf{u} is not in the row space of B.
3. For the matrix A below, in each part express the column space of $A, \mathcal{C}(A)$, as the span of a linearly independent set satisfying the indicated conditions. (35 points)

$$
A=\left[\begin{array}{ccccc}
-3 & -1 & 1 & 4 & -1 \\
2 & 1 & -1 & -2 & 0 \\
-3 & 1 & 1 & 10 & -3 \\
-2 & 0 & 1 & 5 & -1
\end{array}\right]
$$

(a) Vectors in the spanning set are columns of A.

Solution: Theorem BCS is a rehash of Theorem BS: row-reduce the matrix, identify indices of pivot columns and use the columns of the original matrix with the same indices.

$$
\left[\begin{array}{ccccc}
-3 & -1 & 1 & 4 & -1 \\
2 & 1 & -1 & -2 & 0 \\
-3 & 1 & 1 & 10 & -3 \\
-2 & 0 & 1 & 5 & -1
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
\hline 1 & 0 & 0 & -2 & 1 \\
0 & \boxed{1} & 0 & 3 & -1 \\
0 & 0 & \boxed{1} & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So $D=\{1,2,3\}$ and

$$
S=\left\{\left[\begin{array}{c}
-3 \\
2 \\
-3 \\
-2
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right]\right\}
$$

(b) Vectors in the spanning set begin with a "nice pattern of zeros and ones."

Solution: The column space of A is the row space of A^{t} (Theorem CSRST). So transpose A, row reduce, and by Theorem BRS select the non-zero rows as columns vectors in S.

$$
A^{t}=\left[\begin{array}{cccc}
-3 & 2 & -3 & -2 \\
-1 & 1 & 1 & 0 \\
1 & -1 & 1 & 1 \\
4 & -2 & 10 & 5 \\
-1 & 0 & -3 & -1
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
\hline 1 & 0 & 0 & -\frac{1}{2} \\
0 & \boxed{1} & 0 & -1 \\
0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So

$$
S=\left\{\left[\begin{array}{c}
1 \\
0 \\
0 \\
-\frac{1}{2}
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
\frac{1}{2}
\end{array}\right]\right\}
$$

(c) Vectors in the spanning set end with a "nice pattern of zeros and ones."

Solution:
We form the extended echelon form of the matrix,

$$
M=\left[\begin{array}{ccccccccc}
-3 & -1 & 1 & 4 & -1 & 1 & 0 & 0 & 0 \\
2 & 1 & -1 & -2 & 0 & 0 & 1 & 0 & 0 \\
-3 & 1 & 1 & 10 & -3 & 0 & 0 & 1 & 0 \\
-2 & 0 & 1 & 5 & -1 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccccccc}
\hline 1 & 0 & 0 & -2 & 1 & 0 & 1 & -1 & 2 \\
0 & \boxed{1} & 0 & 3 & -1 & 0 & 1 & 0 & 1 \\
0 & 0 & \boxed{1} & 1 & 1 & 0 & 2 & -2 & 5 \\
0 & 0 & 0 & 0 & 0 & 1 & 2 & -1 & 2
\end{array}\right]
$$

The last row, in the last four columns, forms the matrix L, which is already in reduced row-echelon form

$$
L=\left[\begin{array}{|cccc}
1 & 2 & -1 & 2
\end{array}\right]
$$

and by Theorem FS, the null space equal of L is equal to the column space of A, so we can apply Theorem BNS,

$$
\mathcal{C}(A)=\mathcal{N}(L)=\left\langle\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
0 \\
1
\end{array}\right]\right\rangle
$$

4. Prove that a unitary matrix is nonsingular. This is part of the conclusion of Theorem UMI, so do more than just quote this result. (10 points)

Solution: If A is a unitary matrix, then $A^{*} A=I_{n}$, or rephrased, $A^{-1}=A^{*}$, so in particular, A is invertible (Definition MI, Theorem OSIS). An invertible matrix is nonsingular (Theorem NI).
Or, a unitary matrix has columns that form an orthonormal set (Theorem CUMOS). Every orthogonal set is linearly independent, so A has linearly independent columns (Theorem OSLI). By Theorem NMLIC, A is nonsingular.
5. For $m \times n$ matrices A and B, prove that $A+B=B+A$. Include reasons for each step of your proof. (10 points)

Solution: This is Property CM. We work entry-by-entry, for $1 \leq i \leq m, 1 \leq j \leq n$

$$
\begin{aligned}
{[A+B]_{i j} } & =[A]_{i j}+[B]_{i j} & & \text { Definition MA } \\
& =[B]_{i j}+[A]_{i j} & & \text { Property CACN } \\
& =[B+A]_{i j} & & \text { Definition MA }
\end{aligned}
$$

So by Definition ME, the matrices $A+B$ and $B+A$ are equal.
6. Suppose that A is an $m \times n$ matrix and I_{m} is the size m identity matrix. Write a careful proof that $I_{m} A=A$. (15 points)

Solution: This is Theorem MMIM. See a similar proof there.

