Name:

Show all of your work and explain your answers fully. There is a total of 100 possible points.

1. For the matrix A below, compute the dimension of the column space, the row space, the null space and the left null space. (10 points)

$$A = \begin{bmatrix} 1 & 2 & 4 & 1 & 5 \\ -1 & 2 & 0 & 3 & 3 \\ 3 & -2 & 4 & -5 & -1 \end{bmatrix}$$

Solution: To determine these dimensions, we need only compute the rank of the matrix: r, the number of nonzero rows, the number of pivot column, the number of leading ones in the reduced row-echelon form.

1	2	4	1	5]	DDDD	$\left[1 \right]$	0	2	-1	1]
-1	2	0	3	3	$\xrightarrow{\text{RREF}}$	0	1	1	1	2
3	-2	4	-5	-1		0	0	0	0	0

Thus r = 2, and A is a matrix with m = 3 rows and n = 5 columns, so by Theorem DFS we have

$$\mathcal{N}(A) = n - r = 3$$
 $\mathcal{C}(A) = r = 2$ $\mathcal{R}(A) = r = 2$ $\mathcal{L}(A) = m - r = 1$

- 2. In the vector space M_{22} of 2×2 matrices, determine if the set L below is linearly independent. (10 points)
 - $L = \left\{ \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}, \begin{bmatrix} 4 & -2 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} -2 & -1 \\ 1 & -1 \end{bmatrix} \right\}$

Solution: Begin with a relation of linear dependence (Definition RLD)

a_1	$\begin{bmatrix} 2\\ 3 \end{bmatrix}$	$\begin{bmatrix} -1\\1 \end{bmatrix}$	$+a_2\begin{bmatrix}4\\1\end{bmatrix}$	$\begin{bmatrix} -2\\2 \end{bmatrix}$	$+a_3\begin{bmatrix}-2\\1\end{bmatrix}$	$\begin{bmatrix} -1 \\ -1 \end{bmatrix}$	$= \begin{bmatrix} 0\\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$
-------	---------------------------------------	---------------------------------------	--	---------------------------------------	---	--	---	---------------------------------------

Vector space operations and equality in M_{22} lead to a homogeneous system of four equations in three unknowns, with a coefficient matrix that we now row-reduce

$\begin{bmatrix} 2 \end{bmatrix}$	4	-2]		$\left[1 \right]$	0	$\frac{3}{5}$
-1	-2	-1	RREF	$\overline{0}$	1	$-\frac{4}{5}$
3	1	1	$\rightarrow \rightarrow$	0	0	0
1	2	-1		0	0	0

With a free variable, the consistent system has infinitely many solutions, and any non-trivial solution (like $a_1 = -3$, $a_2 = 4$, $a_3 = 5$) will provide a non-trivial relation of linear dependence. Thus L is linearly dependent (Definition LI).

3. In P_2 , the vector space of 2×2 matrices, determine if the set K below spans P_2 . (10 points) $K = \{2x^2 - x + 3, x^2 + x + 1, 3x^2 + 2\}$

Solution: This could be established directly, but might be easier with an application of Theorem G. We know dim $(P_2) = 3$ by Theorem DP. And K has size 3, so by Theorem G we can check linear independence and get the spanning property for "free." So, as in the previous question begin with a relation of linear dependence (Definition RLD)

$$a_1(2x^2 - x + 3) + a_2(x^2 + x + 1) + a_3(3x^2 + 2) = 0x^2 + 0x + 0$$

Vector space operations and equality in P_2 lead to a homogeneous system of three equations in three unknowns, with a coefficient matrix that we now row-reduce

$\begin{bmatrix} 2 \end{bmatrix}$	1	3	DDEE	$\left[1 \right]$	0	0
-1	1	0	$\xrightarrow{\text{RREF}}$	0	1	0
3	1	2		0	0	1

With only a trivial solution to this system, we conclude that $a_1 = a_2 = a_3 = 0$. Thus L is linearly independent (Definition LI).

4. Consider the following subspace of P_2 , the set of polynomials of degree 2.

 $U = \left\{ \left. ax^2 + bx + c \right| a - 4b + c = 0 \right\}$

Solution:

(a) Construct a basis for U and include the necessary details to prove that your set really is a basis. (20 points)

Solution: The defining equation for U can be rewritten as a = 4b - c. This observation, and vector space operations in P_2 allows us to rewrite a generic element of U as follows:

$$ax^{2} + bx + c = (4b - c)x^{2} + bx + c$$

= $(4bx^{2} + bx) + (-cx^{2} + c)$
= $b(4x^{2} + x) + c(-x^{2} + 1)$

Allowing b, c to take on any possible values says that $D = \{4x^2 + x, -x^2 + 1\}$ is a spanning set for P_2 . To be a basis, we need to check the linear independence of the set D. See several other problems in this exam for the technique — it turns out that D is also linearly independent, hence a basis (Definition D).

(b) What is the dimension of U? (6 points)

Solution: With a basis of size 2, $\dim(U) = 2$.

(c) Prove that $C = \{x^2 + 2x + 7, 2x^2 + 3x + 10\}$ is another basis for U. (14 points)

Solution: Since U has dimension 2, the set C has the right size to be another basis. By Theorem G, if C is linearly independent, then it is a basis. We check this in the usual manner.

Begin with a relation of linear dependence (Definition RLD)

$$a_1(x^2 + 2x + 7) + a_2(2x^2 + 3x + 10) = 0x^2 + 0x + 0$$

Vector space operations and equality in P_2 lead to a homogeneous system of three equations in two unknowns, with a coefficient matrix that we now row-reduce

[1	2]	DDEE	$\left[1 \right]$	0
2	3	$\xrightarrow{\text{LLL}}$	0	1
$\lfloor 7 \rfloor$	10		0	0

With only a trivial solution to this system, we conclude that $a_1 = a_2 = 0$. Thus C is linearly independent (Definition LI) and therefore also a basis of U.

5. Suppose V is a vector space and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$. Prove that if $\mathbf{u} + \mathbf{w} = \mathbf{v} + \mathbf{w}$ then $\mathbf{u} = \mathbf{v}$. Give precise reasons for each step of your proof. (15 points)

Solution: See Solution VS.T21, which is nearly identical to the proof you could give here.

6. Suppose that $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ is a basis for the vector space V. Prove that $C = {\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3, \mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_3}$ is also a basis for V. (15 points)

Solution: That B is a basis implies dim (V) = 3 (Definition D). C is a set of size 3, and so has the right size to be a basis for V. Check to see if C is linearly independent.

$$\mathbf{0} = a(\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3) + b(\mathbf{v}_1 + \mathbf{v}_2) + c\mathbf{v}_3$$
$$= a\mathbf{v}_1 + (a+b)\mathbf{v}_2 + (a+b+c)\mathbf{v}_3$$

This is a relation of linear dependence on B (a linearly independent set) where the scalars are a, a+b, a+b+c, so they **must** each be zero. So we have

$$a = 0$$
$$a + b = 0$$
$$a + b + c = 0$$

This homogeneous system has only a trivial solution, so the original relation of linear dependence on C has only a trivial solution, and hence is linearly independent. So C is a basis for V.