Show all of your work and explain your answers fully. There is a total of 100 possible points.

1. Consider the following questions for the linear transformation T defined below. (30 points)
$T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}, \quad T\left(\left[\begin{array}{l}a \\ b \\ c\end{array}\right]\right)=\left[\begin{array}{l}2 a+b-3 c \\ -a+b+3 c\end{array}\right]$

Solution:

(a) Find at least one element of the pre-image $T^{-1}\left(\left[\begin{array}{c}-1 \\ 2\end{array}\right]\right)$.

Solution: We desire an input vector $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ such that

$$
T\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=\left[\begin{array}{l}
2 a+b-3 c \\
-a+b+3 c
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

This leads a system of equations, with the augmented matrix below,

$$
\left[\begin{array}{cccc}
2 & 1 & -3 & -1 \\
-1 & 1 & 3 & 2
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & -2 & -1 \\
0 & \boxed{1} & 1 & 1
\end{array}\right]
$$

Setting the free variable to zero, we find a solution: $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$ that is an element of the pre-image.
There are, of course, other answers depending on your choice for the free variable.
(b) Is T injective? Justify your answer without using your answer to the next part of this problem.

Solution: The kernel of T is the pre-image of zero, so similar to the previous part of this problem, the condition that a domain element be in the kernel is equivalent to being a solution to the homogeneous system with augmented matrix,

$$
\left[\begin{array}{cccc}
2 & 1 & -3 & 0 \\
-1 & 1 & 3 & 0
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
{[1} & 0 & -2 & 0 \\
0 & \boxed{1} & 1 & 0
\end{array}\right]
$$

With a free variable, we see the kernel is non-trivial and by Theorem KILT the linear transformation is not injective.
(c) Find two different elements of the domain, such that when used to evaluate T produce the same output. Or explain why this is not possible.
Solution: We could find two elements in the kernel (both produce the zero vector as an output), or we can find a second element of the pre-image in the first part of this question. Pursuing this second approach, set the free variable to 1 and obtain the second input $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ that also produces the output $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$.
(d) Is T surjective? Justify your answer.

Solution: The range is spanned by (Theorem SSRLT),

$$
\left\{T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right), T\left(\mathbf{e}_{3}\right)\right\}=\left\{\left[\begin{array}{c}
2 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-3 \\
3
\end{array}\right]\right\}
$$

This set is linearly dependent (Theorem MVSLD), but we want to go further and determine just what subspace of \mathbb{C}^{2} it spans. Make the vectors the rows of a matrix and row-reduce,

$$
\left[\begin{array}{cc}
2 & -1 \\
1 & 1 \\
-3 & 3
\end{array}\right] \xrightarrow{\operatorname{RREF}}\left[\begin{array}{cc}
1 & 0 \\
0 & \left.\begin{array}{cc}
1 \\
0 & 0
\end{array}\right]
\end{array}\right.
$$

So the range of T is

$$
\mathcal{R}(T)=\left\langle\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}\right\rangle=\mathbb{C}^{2}
$$

By Theorem RSLT, T is surjective.
(e) Find an element of the codomain, such that there is no element of the domain which when used to evaluate T produces the chosen element of the codomain. Or explain why this is not possible.
Solution: T is surjective, so it is impossible to find such an element.
2. Consider the linear transformation S below, where P_{1} is the vector space of polynomials in x with degree 1 or less, and M_{12} is the vector space of 1×2 matrices. (40 points)
$S: P_{1} \rightarrow M_{12}, \quad S(a+b x)=\left[\begin{array}{ll}2 a+3 b & 3 a+4 b\end{array}\right]$

Solution:

(a) Prove that S is invertible, without using any results obtained in the next part.

Solution: A polynomial $a+b x$ is in the kernel of S if $\left[\begin{array}{cc}2 a+3 b & 3 a+4 b\end{array}\right]=\left[\begin{array}{ll}0 & 0\end{array}\right]$. The resulting homogeneous system of equationsonly has the trivial solution $a=b=0$, so the kernel is trivial. Thus by Theorem KILT, S is injective.
Now by Theorem RPNDD,

$$
2=\operatorname{dim}\left(P_{1}\right)=\operatorname{dim}(\mathcal{R}(S))+\operatorname{dim}(\mathcal{K}(S))=\operatorname{dim}(\mathcal{R}(S))+0=\operatorname{dim}(\mathcal{R}(S))
$$

so $\operatorname{dim}(\mathcal{R}(S))=2$. As $\mathcal{R}(S)$ is a subspace of M_{12}, a vector space of dimension 2, we conclude $\mathcal{R}(S)=M_{12}$ (Theorem EDYES). By Theorem RSLT, S is surjective.
Finally, by Theorem ILTIS, S is invertible.
(b) Compute a formula for the inverse of S, S^{-1}.

Solution: By Theorem LTDB it "is enough" to know what S^{-1} does to a basis of M_{12}. A good choice for a basis is $C\left\{\left[\begin{array}{ll}1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1\end{array}\right]\right\}$. The pre-image of any element of M_{12} will be a set of size 1 ; we want this element of P_{1} for each basis element in C.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 a+3 b & 3 a+4 b
\end{array}\right]=S(a+b x)=\left[\begin{array}{ll}
1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll}
2 & 3 & 1 \\
3 & 4 & 0
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccc}
1 & 0 & -4 \\
0 & \boxed{1} & 3
\end{array}\right]} \\
& S^{-1}\left(\left[\begin{array}{ll}
1 & 0
\end{array}\right]\right)=a+b x=-4+3 x \\
& {\left[\begin{array}{cc}
2 a+3 b & 3 a+4 b
\end{array}\right]=S(a+b x)=\left[\begin{array}{ll}
0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
2 & 3 & 0 \\
3 & 4 & 1
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & \boxed{1} & -2
\end{array}\right]} \\
& S^{-1}\left(\left[\begin{array}{ll}
0 & 1
\end{array}\right]\right)=a+b x=3-2 x
\end{aligned}
$$

So for a general formula we can create

$$
\begin{aligned}
S^{-1}\left(\left[\begin{array}{ll}
p & q
\end{array}\right]\right) & =S^{-1}\left(p\left[\begin{array}{ll}
1 & 0
\end{array}\right]+q\left[\begin{array}{ll}
0 & 1
\end{array}\right]\right) \\
& =p S^{-1}\left(\left[\begin{array}{ll}
1 & 0
\end{array}\right]\right)+q S^{-1}\left(\left[\begin{array}{ll}
0 & 1
\end{array}\right]\right) \\
& =p(-4+3 x)+q(3-2 x) \\
& =(-4 p+3 q)+(3 p-2 q) x
\end{aligned}
$$

(c) Fill-in the blank: The work above allows us to conclude that P_{1} and M_{12} are \qquad vector spaces.
Solution: "isomorphic"
3. Suppose V is a vector space and $T: V \rightarrow V$ is a linear transformation. Then a vector \mathbf{v} is an eigenvector of \mathbf{T} if $T(\mathbf{v})=\lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}$. Prove that if $\mathbf{v}, \mathbf{u} \in V$ are both eigenvectors of T with the same scalar λ, then $\mathbf{v}+\mathbf{u}$ is also an eigenvector of T. Write a careful proof with explanations for each step. (15 points)
Solution: Check if $\mathbf{v}+\mathbf{u}$ is an eigenvector of T,

$$
\begin{aligned}
T(\mathbf{v}+\mathbf{u}) & =T(\mathbf{v})+T(\mathbf{u}) & & \text { Definition LT } \\
& =\lambda \mathbf{v}+\lambda \mathbf{u} & & \text { Hypothesis } \\
& =\lambda(\mathbf{v}+\mathbf{u}) & & \text { Property DVA }
\end{aligned}
$$

4. Suppose that $T: U \rightarrow V$ is a linear transformation, $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{m}\right\}$ is a subset of U and that $C=\left\{T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), T\left(\mathbf{u}_{3}\right), \ldots, T\left(\mathbf{u}_{m}\right)\right\}$ is a spanning set for V. Prove T is surjective. (15 points)
Solution: To establish that T is surjective, we will show that every element of V is an output of T for some input (Definition SLT). Suppose that $\mathbf{v} \in V$. As an element of V, we can write \mathbf{v} as a linear combination of the spanning set C. So there are are scalars, $b_{1}, b_{2}, b_{3}, \ldots, b_{m}$, such that

$$
\mathbf{v}=b_{1} T\left(\mathbf{u}_{1}\right)+b_{2} T\left(\mathbf{u}_{2}\right)+b_{3} T\left(\mathbf{u}_{3}\right)+\cdots+b_{m} T\left(\mathbf{u}_{m}\right)
$$

Now define the vector $\mathbf{u} \in U$ by

$$
\mathbf{u}=b_{1} \mathbf{u}_{1}+b_{2} \mathbf{u}_{2}+b_{3} \mathbf{u}_{3}+\cdots+b_{m} \mathbf{u}_{m}
$$

Then

$$
\begin{array}{rlr}
T(\mathbf{u}) & =T\left(b_{1} \mathbf{u}_{1}+b_{2} \mathbf{u}_{2}+b_{3} \mathbf{u}_{3}+\cdots+b_{m} \mathbf{u}_{m}\right) \\
& =b_{1} T\left(\mathbf{u}_{1}\right)+b_{2} T\left(\mathbf{u}_{2}\right)+b_{3} T\left(\mathbf{u}_{3}\right)+\cdots+b_{m} T\left(\mathbf{u}_{m}\right) \quad \text { Theorem LTLC } \\
& =\mathbf{v} &
\end{array}
$$

So, given any choice of a vector $\mathbf{v} \in V$, we can design an input $\mathbf{u} \in U$ to produce \mathbf{v} as an output of T. Thus, by Definition SLT, T is surjective.

