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1 Some Linear Algebra Review

In the study of Lie algebras and linear groups, there are several topics from linear algebra
that play an important role in the definitions and theorems. They are presented here as a
convenience, so that you will not have to dig out your old linear algebra book and look them
up yourself.

Definition 1.1 The trace of a matrix A, tr(A), is the sum of the entries along the diagonal
of the matrix A.

Definition 1.2 The norm of a matrix A is the number identified by ‖A‖ = max‖Ax‖‖x‖ , where
x is any vector other than the zero vector. The norm is also known as the “amplifying power”
of the matrix.

The following theorems and definitions will give us a better idea as to how one may
compute the norm of a matrix.

Definition 1.3 The conjugate transpose, or adjoint, of an m x n matrix A is the n x m A∗

such that (A∗)ij = Aji. A matrix is self-adjoint if A∗ = A.

Definition 1.4 Let B be an n x n self-adjoint matrix. The Rayleigh quotient for x 6= 0 is
defined as the scalar RB(x) = (Bx,x)

‖x‖2 , where (Bx,x) is the inner product of Bx and x.

Theorem 1.5 For a self-adjoint matrix B, the max of the Rayleigh quotient when x 6= 0,
maxx 6=0RB(x), is equal to the largest eigenvalue of B, and the min of the Rayleigh quotient
when x 6= 0, minx 6=0RB(x), is equal to the smallest eigenvalue of B.

Proof There is an earlier theorem stating that if V is a finite-dimensional vector space, and
T is a linear transformation in V , then T is self-adjoint if and only if V has an orthonormal
basis consisting of eigenvectors of V. By this theorem, since we know B is self-adjoint, we
can choose an orthonormal basis {x1, . . . ,xn} of eigenvectors of B such that Bxi = λixi,
1 ≤ i ≤ n, where λ1 ≥ λ2 ≥ · · · ≥ λn. Since the eigenvalues of a self-adjoint matrix are
always real, these inequalities are meaningful. Now for x ∈ Cn, there exist scalars a1, . . . , an
such that

x =
n∑
i=1

aixi

and thus

RB(x) =
(Bx,x)

‖x‖2
=

(
∑n
i=1 λiaixi,

∑n
j=i ajxj)

‖x‖2
=

∑n
i=1 λi|ai|2

‖x‖2
≤ λ1

∑n
i=1 |ai|2

‖x‖2
= λ1.

It should be obvious that RB(x1) = λ1, and so we have shown that maxx 6=0RB(x) is equal
to the largest eigenvalue of B. The second part of the theorem, that minx 6=0RB(x) is equal
to the smallest eigenvalue of B, is proved in a similar fashion.[2]

Corollary 1.6 For any square matrix A, ‖A‖ is finite and is equal to
√
λ, where λ is the

largest eigenvalue of A∗A.
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Proof Let B be the self-adjoint matrix A∗A (since (A∗A)∗ = A∗(A∗)∗ = A∗A), and let λ be
the largest eigenvalue of B. Since when x 6= 0, we have

0 ≤ ‖Ax‖
2

‖x‖2
=

(Ax,Ax)

‖x‖2
=

(A∗Ax, x)

‖x‖2
=

(Bx, x)

‖x‖2
= RB(x),

the preceeding theorem tells us that ‖A‖2 = λ.

2 The Exponential of a Matrix

Unless otherwise specified, all matrices are taken to be square.

Definition 2.1 If X is a matrix, then we define exp(X) =
∑∞
k=0

1
k!
Xk.

This should look familiar, as this is also the Taylor series for ex when x is a real or
complex variable. This definition is given further justification in the following proposition.

Proposition 2.2 a) For any matrix X, d
dτ

exp(τX) = X exp(τX) = exp(τX)X, and a(τ) =
exp(τX) is the unique differentiable solution to a′(τ) = Xa(τ), a(0) = 1.

b) For any two commuting matrices X and Y , exp(X) exp(Y ) = exp(X + Y ).
c) For any matrix X, exp(X) is invertible, and (exp(X))−1 = exp(−X).
d) For any matrix X and scalars τ , σ, exp((τ + σ)X) = exp(τX) exp(σX), and a(τ) =

exp(τX) is the unique differentiable solution of a(τ+σ) = a(τ)a(σ), a(0) = 1, and a′(0) = X.

Proof a) Let us take the definition of exp(τX) and differentiate it term-by-term:

d

dτ
(exp(τX) =

d

dτ

∞∑
j=0

τ j

j!
Xj =

∞∑
j=1

τ j−1

(j − 1)!
Xj.

Factoring out an X from this series, either to the left or to the right, and then reindexing
shows that this is equal to X exp(τX) = exp(τX)X. For the second claim of a), assume
that a(τ) satisfies the equations a′(τ) = Xa(τ) and a(0) = 1. Differentiating according to
the product rule, we get

d

dτ
(exp(−τX)(a(τ)) = (

d

dτ
exp(−τX))a(τ) + exp(−τX)(

d

dτ
a(τ))

= exp(−τX)(−X)a(τ) + exp(−τX)Xa(τ)

= 0.

Thus, exp(−τX)a(τ) is independent of τ , and since this equation is 1 at τ = 0, it equals
one identically. Now part c) tells us that this means exp(τX)−1a(τ) = 1, and thus a(τ) =
exp(τX).

b) The product of two norm-convergent matrix series can be calculated by forming all
possible products of terms of the first series with terms of the second series and then summing
in any order. When we apply this principle to expX expY , we get

expX expY = (
∞∑
j=0

Xj

j!
)(
∞∑
k=0

Y k

k!
) =

∞∑
j,k=0

XjY k

j!k!
.
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Considering the other side of the equation, and assuming that X and Y commute, we can
rearrange and collect terms while expanding (1/m!)(X + Y )m to get

exp(X + Y ) =
∞∑
m=0

1

m!
(X + Y )m =

∞∑
m=0

1

m!
(

∑
j+k=m

m!

j!k!
XjY k) =

∞∑
j,k=0

XjY k

j!k!
.

Since this is equal to what we obtained from the left side of the equation, we conclude that
exp(X) exp(Y ) = exp(X + Y ).

c) We must show that exp(X) exp(−X) = 1. This is done if we take b) and put in
Y = −X. Then we have exp(X) exp(−X) = exp(X −X) = exp(0) = 1. This assumes that
X and −X commute, which is easily shown to be true.

d) If we distribute the scalars, then we have exp((τ + σ)X) = exp(τX + σX), and with
b), this is easily shown to be equal to exp(τX)(exp(σX). For the second claim of d), assume
that a(τ) has the indicated property. Then

a′(τ) =
d

dσ
a(τ + σ)|σ=0 = a(τ)

d

dσ
|σ=0 = a(τ)X,

and the claim follows from the second part of a). [3]

Proposition 2.3 For any matrix X and any invertible matrix A, A exp(X)A−1 = exp(AXA−1).

Proof

A exp(X)A−1 = A(
∞∑
k=0

Xk

k!
)A−1 =

∞∑
k=0

(AXA−1)k

k!
= exp(AXA−1).

Definition 2.4 For any invertible matrix A ∈M , where M is a matrix space, we denote by
AdA the conjugation operation by A as a linear transformation of M : AdA(Y ) = AY A−1.
Conjugation is here used in the sense we meant it in group theory last semester, not as it
would mean in regard to complex numbers. Note that AdA(XY ) = AdA(X)AdA(Y ), and
AdA(X−1) = AdA(X)−1, so that AdA is a homomorphism from M → GL(M).

Definition 2.5 For a not necessarily invertible matrix X ∈M , we define the operation adX
as adX(Y ) = XY − Y X. adX is a linear transformation of M. We generally write this as a
bracket: [X, Y ] = XY − Y X. This is also known as the commutator.

The following proposition shows the connection between Ad and ad.

Proposition 2.6 For any X ∈M , AdexpX(Y ) = exp(adX(Y )).

Proof Fix X ∈M and let A(τ) = Adexp(τX)Y for τ ∈ R. Calculate the derivative:

A′(τ) =
d

dτ
(exp(τX)Y exp(−τX))

= X exp(τX)Y exp(−τX) + exp(τX)Y exp(−τX)(−X)

= adX(Adexp(τX)(Y )).

Thus, A′(τ) = adX(A(τ)), and A(0) = 1. From Proposition 2.1, we know that the only
solution of these equations is A(τ) = exp(τadX(Y )), which gives the desired result. [3]
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Theorem 2.7 Let X = X(τ) be a matrix-valued differentiable function of a scalar variable
τ . Then

d

dτ
exp(X) = exp(X)

1− exp(−adX)

adX

dX

dτ
.

Proof Set Y (σ, τ) = exp(−σX(τ)) ∂
∂τ

exp(σX(τ)) for σ, τ ∈ R. Differentiate with respect
to σ:

∂Y

∂σ
= (exp(−σX))(−X)

∂

∂τ
exp(σX) + exp(−σX)

∂

∂τ
(X exp(σX))

= (exp(−σX))(−X)
∂

∂τ
exp(σX) + exp(σX)

dX

xτ
exp(σX) + (exp(−σX))X

∂

∂τ
exp(σX)

= (exp(−σX))
dX

dτ
exp(σX)

= Adexp(−σX)
dX

dτ

= exp(ad−σX(
dX

dτ
)).

Now

exp(−X)
d

dτ
expX = Y (1, τ) =

∫ 1

0

∂

∂σ
Y (σ, τ) dσ[sinceY (0, τ) = 0]

and
∂Y

∂σ
= exp(−σadX(

dX

dτ
)) =

∞∑
k=0

(−1)kσk

k!
(adX)k

dX

dτ
.

When we integrate this series term by term from σ = 0 to σ = 1, we get

exp(−X)
d

dτ
expX =

∞∑
k=0

(−1)k

(k + 1)!
(adX)k

dX

dτ
,

which, with a little manipulation, is the formula we were after. [3]

Lemma 2.8 Let f(z) =
∑∞
k=0 αkz

k be a power series with real or complex coefficients.
Suppose U is a linear transformation so that the series f(U) =

∑∞
k=0 α

kUk converges. If
λ1, . . . , λn are the eigenvalues of U, listed with multiplicities, then f(λ1), . . . , f(λn) are the
eigenvalues of f(U), listed with multiplicities.

Proof Select a basis so that U is triangular with diagonal entries λ1, . . . , λn. (This may re-
quire going to complex scalars, even if the original matrix has only real coefficients.) For each
k = 0, 1, . . . , Uk is then also triangular with diagonal entries λk1, λ

k
2, . . . , λ

k
n. Thus, f(U) itself

is a triangular matrix with diagonal entries given by the power series f(λ1), f(λ2), . . . , f(λn);
these power series f(λj) converge, because f(U) is assumed to converge.

Proposition 2.9 If none of the eigenvalues of adX are of the form λ = 2πik, k = ±1,±2, . . . ,
then exp : M →M has an inverse defined on a neighborhood of X.

Proof By the above lemma, the eigenvalues of (1−exp(−U))/U are of the form (1−e−λ)/λ,
λ an eigenvalue of U . The given values of λ are precisely the solutions of the equation
(1− e−λ)/λ = 0; this gives the conclusion when one takes U = adX .
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3 Lie Algebras and Linear Groups as Examples

Through this section, and indeed throughout the entire paper, “Lie” should be pronounced
“lee,” not “lye.” We begin with the definition of a Lie algebra.

Definition 3.1 A Lie algebra g is a real (or complex) vector space g over a field F together
with an operator [, ] : g x g → g called the bracket, such that for x, y, z ∈ g, the following
properties hold:

1) [x, y] ∈ g (closure)
2) [ax+ by, z] = a[x, z] + b[y, z] and [z, ax+ by] = a[z, x] + b[z, y] for all scalars a, b ∈ F

(bilinearity)
3) [x, y] = −[y, x] (anticommutativity)
4) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0. (Jacobi identity)

Example Any vector space V , if [x, y] = 0 for all x, y ∈ V , is a Lie algebra. Such an algebra
is called abelian. This is consistent with our former definition of abelian as commutative, since
by property (2) of the definition, the only way we can have [x, y] = [y, x] is if [y, x] = −[y, x],
so that [y, x] = 0 for all x, y.

Example The set of vectors R3 is a Lie algebra under the operation [X, Y ] = X x Y , where
X x Y is the cross-product.

Example Any vector space with dimension 2 and basis x, y is a Lie algebra if we set [x, x] =
[y, y] = 0 and [x, y] = y, and then extend these properties so that they satisfy the bilinearity
property.

Example The vector space of all real n x n matrices is a Lie algebra if [A,B] = AB −BA.
Since this is one of the most important examples, we will prove that this satisifies all four
properties of the definition.

Closure: Since the vector space of all real n x n matrices is closed under matrix multi-
plication and matrix addition (and therefore subtraction), it is also closed under the bracket
operation.

Bilinearity:

[αA+ βB,C] = (αA+ βB)C − C(αA+ βB)

= αAC + βBC − CαA− CβB
= αAC − αCA+ βBC − βCB
= α(AC − CA) + β(BC − CB)

= α[A,C] + β[B,C]

[C, αA+ βB] = C(αA+ βB)− (αA+ βB)C

= −((αA+ βB)C − C(αA− βB))

= −[αA+ βB,C]

= −(α[A,C] + β[B,C])

= −α(AC − CA)− β(BC − CB)

= α(CA− AC) + β(CB −BC)

= α[C,A] + β[C,B]
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Anticommutativity: [A,B] = AB −BA = −(BA− AB) = −[B,A].
Jacobi identity:

[[A,B], C] + [[B,C], A] + [[C,A], B] = [AB −BA,C] + [BC − CB,A] + [CA− AC,B]

= (AB −BA)C − C(AB −BA) + (BC − CB)A

−A(BC − CB) + (CA− AC)B −B(CA− AC)

= ABC −BAC − CAB + CBA+BCA− CBA
−ABC + ACB + CAB − ACB −BCA+BAC

= 0.

Therefore, this truly is a Lie algebra, since it satisfies all of the requisite four properties.
You will notice that this is the same bracket operation we defined earlier, which is now
justified. Note that it was also referred to as adX(Y ), in addition to as [X, Y ].

Definition 3.2 A linear group G is any family of invertible matrices with the property that
A ∈ G implies that A−1 ∈ G, and A,B ∈ G implies that AB ∈ G.

Definition 3.3 A linear Lie algebra g is a Lie algebra over a linear group G with the bilinear
operation defined by [A,B] = AB −BA.

Definition 3.4 Let G be a linear group. The tangent space g to G at 1 consists of all
matrices X for which one can find a differentiable curve a(τ) that lies in G and satisfies
a(0) = 1 and a′(0) = X.

Proposition 3.5 1) g, the tangent space to a linear group, is a real vector space:

X, Y ∈ g implies αX + βY ∈ g for all α, β ∈ R.

2) g is closed under the bracket operation:

X, Y ∈ g implies [X, Y ] ∈ g.

Proof 1) Take X, Y ∈ g and α, β ∈ R. There are differentiable curves a(τ) and b(τ) that
lie in G so that a(0) = b(0) = 1, a′(0) = X, and b′(0) = Y . Then the differentiable curve
c(τ) = a(ατ)b(βτ) also lies in G. It satisfies c(0) = 1 and

c′(0) = (a′(ατ)αb(τ) + a(ατ)b′(βτ)β)|τ=0 = αX + βY.

This shows that αX + βY ∈ g as well. 2) Again take X, Y ∈ g and choose a(τ) and b(τ) as
above. For fixed σ ∈ R (sufficiently close to 0), cσ(τ) = a(σ)b(τ)a(σ)−1 is a differentiable
curve in G. It satisfies cσ(0) = 1 and c′σ(0) = a(σ)Y a(σ)−1. This shows that a(σ)Y a(σ)−1 ∈ g
for σ sufficiently close to 0. As a curve in the vector space g, σ → a(σ)Y a(σ)−1 has its tangent
vector in g. We compute the following:

d

dσ
(a(σ)Y a(σ)−1)|σ=0 = XY − Y X = [X, Y ].

This shows that [X, Y ] ∈ g, as required.[3]
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From the above, it should be evident that the tangent space of G and the Lie algebra of
G are really the same thing.

Theorem 3.6 If f : Rn → Rn is a k times differentiable map, 1 ≤ k ≤ ∞, with an
invertible derivative at a point c ∈ Rn, then f is itself k times differentiable and invertible
in a neighborhood of c.

This is known as the Inverse Function Theorem. Since it belongs more in the reign of
calculus, we shall not prove it here, but go on to use it in the following theorem.

Theorem 3.7 Let G be a linear group, and g its Lie algebra. Then exp maps g into G.

Proof Choose a basis X1, X2, . . . , Xm for g and set

f(τ1X1 + τ2X2 + . . .+ τmXm) = a1(τ1)a2(τ2) · · · am(τm),

where ak(τ) is a differentiable curve with ak(0) = 1 and a′k(0) = Xk. Then f : g → G ⊂ M
and df0X = X for all X ∈ g. Choose a subspace s of M complementary to g, so that
M = g ⊕ s (the direct sum of g and s), and a map h : s → M partially defined in a
neighborhood of 0 in s and satisfying h(0) = 1 and dh0Y = Y for all Y ∈ s; for example,
h(Y ) = 1 + Y . Define φ : g × s → M by φ(X, Y ) = f(X)h(Y ). Then φ is defined and
differentiable in a neighborhood of (0,0) in g × s and satisfies df(0,0)(X, Y ) = X + Y . In
particular, this differential is invertible.

According to the Inverse Function Theorem, φ itself has a local inverse W : M → g ×
s, a→ (U(α), V (α)), defined for a in a neighborhood of 1 in M is of the form a = f(X)h(Y )
for unique (X, Y ) in a neighborhood of (0,0) in g × s, namely X = U(a), Y = V (a). If
V (a) = 0, then a = f(X)h(0) = f(X) is in G. It is also the case that V (a) = 0 implies that
a ∈ G.

Fix (X, Y ) ∈ g × s, sufficiently close to (0,0) so that W is defined near a = φ(X, Y ) in
M . Given Z ∈ g, we have

V (f(X + τZ)h(Y )) = Y

for τ ∈ R close to 0. Differentiation with respect to τ at τ = 0 gives

(dV )a{(dfXZ)(h(Y )} = 0.

Substituting h(Y ) = f(X)−1a, we obtain

dVa{(dfXZ)f(X)−1a} = 0.

The matrix (dfXZ)f(X)−1 is again in g, because it is the tangent vector at 1 of a differentiable
curve in G:

((df)XZ)g(X)−1 =
d

dτ
f(X + τZ)f(X)−1|τ=0.

Thus, we can define a map A : g → g by AZ = (dfXZ)f(X)−1. A = A(X) is a linear
transformation of g depending continuously on X. dVa{(dfXZ)f(X)−1a} = 0 now becomes

dVa{(AZ)a} = 0,
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where it is understood that
a = f(X)h(X), A = A(X).

For X = 0, A reduces to the identity transformation of g, because f(0) = 1 and (df)0Z ≡ Z.
In particular, detA 6= 0 for X = 0. By continuity, detA 6= 0 for X in a neighborhood of 0 in
g. So if X is near 0 in g, then A is invertible, and every element of g is of the form AZ for
some Z ∈ g. We can therefore replace AZ by Z in dVa{(AZ)a} = 0 and see that

dVa(Za) = 0

for all a in a neighborhood of 1 in M and all Z in g.
We now return to the assertion that exp maps g into G. Take X ∈ g and set a(τ) =

exp(τX). According to dVa(Za) = 0,

dVa(τ)(Xa(τ)) = 0,

which says that
d

dτ
V (a(τ)) = 0;

and this holds for all τ in an interval about 0 in R. Consequently, V (a(τ)) is constant there.
For τ = 0 we have V (a(0)) = 0, and therefore V (a(τ)) ≡ 0 for τ in an interval about 0 in R.
When we consider that V (a) = 0 implies that a ∈ G, this implies that a(τ) = exp(τX) lies
in G for τ in that interval. Contemplating the identity expX = (expX/k)k, one sees that
exp(X) will be in G for all X ∈ g. [3]

Corollary 3.8 The Lie algebra g of a linear group G consists of all matrices X for which
exp(τX) lies in G for all τ ∈ R.

Proof Let us use the notation S = {X| exp(τX) ⊂ G∀τ ∈ R}. The fact that g ⊂ S follows
from the above theorem. The fact that S ⊂ g follows when one observes that a(τ) = exp(τX)
provides a path for X, as required by the definition of g as a tangent space.

4 Properties of Lie Algebras

There are many structures of algebras we have seen earlier in our course that have similar
parallels in Lie algebras. We list several of them here, although there is not really space to
do them justice.

Definition 4.1 A homomorphism of algebras φ : g → h of Lie algebras is a linear map that
respects brackets: φ([X, Y ]) = [φ(X), φ(Y )]. An isomorphism is an invertible homomor-
phism. An isomorphism α : g → g of a Lie algebra g with itself is called an automorphism
of g. The collection of all automorphisms of a Lie algebra g is a subgroup of GL(g) (the
group of linear transformations of g) and therefore, a linear group. It is denoted Aut(g).

Definition 4.2 When g is the Lie algebra of a linear group G, then every A ∈ G defines an
automorphism AdA(X) = AXA−1. The map G→ Aut(g), A→ AdA, is a group homomor-
phism, and is called the adjoint representation.
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Definition 4.3 A Lie subalgebra of g is a subspace closed under the bracket operation. A
Lie subalgebra a is an ideal if [A,B] ∈ a whenever A ∈ a and B ∈ g. If g has no ideals other
than {0} and g, then g is called a simple Lie algebra.

Definition 4.4 The center of g is the largest ideal c such that [g, c] = 0; i.e., that [X, Y ] = 0
for all X ∈ g, Y ∈ c. It is unique.

Definition 4.5 Any linear transformation δ of g with the property δ([Y, Z]) = [δ(Y ), Z] +
[Y, δ(Z)] is called a derivation of g. The collection of all derivations of a Lie algebra g,
denoted by Der(g), is a Lie subalgebra of gl(g), and therefore, a linear Lie algebra.

Proposition 4.6 Der(g) is the Lie algebra of the linear group Aut(g).

Proof Using Corollary 3.4, we have to show that a linear transformation δ of g is a deriva-
tion, that is, it satisfies

δ([X, Y ]) = [δ(X), Y ] + [X, δ(Y )]

if and only if exp(τδ) is an automorphism for all τ ∈ R, i.e. it satisfies

exp(τδ)[X, Y ] = [exp(τδ)X, exp(τδ)Y ].

If the latter equation holds for all τ , then then the former equation follows by differentiation
at τ = 0, using the product rule for bilinear mappings.

Conversely, suppose the former equation holds. To see that the latter equation holds as
well, write it in the form

exp(−τδ)[exp(τδ)X, exp(τδ)Y ] = [X, Y ].

The derivative of the left side of this equation with respect to τ is

exp(−τδ)(−δ[exp(τδ)X, exp(τδY ] + [δexp(τδ)X, exp(τδ)Y ] + [exp(τδ)X, δexp(τδ)Y ]),

which is identically 0, in view of our first equation. Thus the left side that we just differen-
tiated is independent of τ , and therefore equal to the right side, as one sees by setting τ = 0
[3]
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