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Modules Dylan Poulsen

1 Introduction

A module, speaking loosely, is a vector space over a ring instead of over a field. This statement is
justified by examining the defining axioms of a module (in this case we define a left R-module since
multiplication in the ring R may not be commutative; similar axioms define a right R-module).

Definition. A left R-module M over a ring R with unity 1R is an abelian group with a scalar
product

· : R×M →M,

where we write ·(α,m) = α · m, defined for all α ∈ R and all m ∈ M satisfying the following
axioms.

• α · (β ·m) = (αβ) ·m

• (α + β) ·m = α ·m+ β ·m

• α · (m+ n) = α ·m+ α · n

• 1R ·m = m

where α, β ∈ R and m,n ∈M .

If we examine the definition of a vector space given in Judson [4], we see the above axioms
are completely the same with the exception that the field F has been replaced by a ring R. As
is often the case in mathematics, a relaxation in defining axioms can lead to unexpected results.
When studying linear algebra and vector spaces, for example, we develop a strong intuition for
the concepts of linear independence and of bases. This intuition is immediately challenged when
studying modules, as the following example illustrates.

1.1 Modules are not always like Vector Spaces

Consider the rational numbers Q as a Z-module. We can check that Q is an Z-module by noting
that Q forms an abelian group under addition and by noting the four module axioms hold since
for a, b, c, d,m, n ∈ Z and for a

b
, c

d
∈ Q,

• n
(
ma

b

)
= (nm)a

b

• (n+m)a
b

= na
b

+ma
b

• n
(

a
b

+ c
d

)
= na

b
+ n c

d

• 1Z
a
b

= a
b

where we use familiar properties of Z and Q. We will now show that the Z-module Q does not have
a basis, where we use the definitions of linear independence and basis from linear algebra, with
vector space replaced by module and scalar field replaced by ring. We will show for any number
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of elements in Q, they will not form a basis of Q. A basis for Q cannot have one element, since if
that were so then there would exist an element a/b ∈ Q,a, b ∈ Z, b 6= 0, such that for some r ∈ Z,

r
a

b
=

a

b+ 1
. (1)

This cannot be, however, since equation (1) above implies

r(b+ 1) = b

or,

r =
b

b+ 1

which, since b 6= 0, implies r /∈ Z, a contradiction. Now, we will show two elements of Q cannot
form a basis of Q. Let a1/b1, a2/b2 ∈ Q,a1/b1 6= a2/b2, with a1, a2, b1, b2 ∈ Z and consider for
r1, r2 ∈ Z the relation of linear dependence

r1
a1

b1
+ r2

a2

b2
= 0.

If we let r1 = b1a2 and let r2 = −b2a1, then r1, r2 ∈ Z and this choice of scalars satisfy the relation
of linear dependence above. Therefore any two elements of Q are linearly dependent, and therefore
cannot form a basis for Q. An induction argument shows that any number of elements greater
than two in Q are linearly dependent, and therefore cannot form a basis for Q.

1.2 More Basic Examples

As the above example shows, although the module axioms seem like a minor relaxation in the
vector space axioms, the result of this change can be surprising and rich. In fact, many objects
which are studied in an introductory abstract algebra course turn out to be modules. For example,
an abelian group G with group operation + is an Z-module with scalar multiplication defined as,
for g ∈ G and n ∈ Z,

ng =



g + g + . . .+ g︸ ︷︷ ︸
n times

if n > 0

0 if n = 0

(−g) + (−g) + . . .+ (−g)︸ ︷︷ ︸
n times

if n < 0

where −g is the inverse of g. It can also be shown that left ideals of a ring R are R-modules, and
that vector spaces are a special cases of modules when the ring R is actually a field.

1.3 Where We are Going

The primary goal of this paper is to build enough vocabulary and theorems to prove the repre-
sentation theorem for a finitely generated module over a Principal Ideal Domain (PID). With this
in hand, we will be able to show as simple corollaries the structure of finitely generated abelian
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groups and the classification of finite vector spaces. We hope that showing major ideas in the
abstract algebra course as corollaries to a theorem about modules will demonstrate the worth of
studying modules.

2 Predictable yet Necessary Vocabulary

Many definitions about groups, rings and vector spaces carry over naturally to modules, as modules
are just a generalization of the three concepts. In this section, we introduce precise definitions which
should feel ‘natural’ to a student of abstract algebra. We start with the definition of a submodule.
Just as with groups, rings and fields, when introducing algebraic objects, it is interesting and
natural to investigate subsets of the original set which obey the same algebraic properties of the
original set. This leads us to the following definition

Definition. Let R be a ring and let M be an R-module. A subset N of M is an R-submodule of
M if and only if N is a subgroup of the abelian group of M that is also an R-module with scalar
multiplication · defined as it is on M such that α · n ∈ N for all α ∈ R and n ∈ N .

Some examples of submodules include subgroups of an abelian group, which are Z-submodules,
as well as ideals of a ring R, where we regard the ring R as an R-module. Since every subgroup of
an abelian group is abelian and since every abelian subgroup is normal, we can define a quotient
module much like we can form a quotient group.

Definition. Let R be a ring and let M be an R-module and let N be an R-submodule of M . A
quotient module M/N is the quotient group of the abelian group of M that is also an R-module
with scalar multiplication ◦ defined by

α ◦ (m+N) = α ·m+N

for all α ∈ R, m+N ∈M/N .

We can check that scalar multiplication in the quotient submodule is well defined by noting if
m + N = m′ + N then m −m′ ∈ N which implies a ·m − a ·m′ = a · (m −m′) ∈ N since N is
a submodule and is hence closed under scalar multiplication. Therefore a ·m + N = a ·m′ + N .
Next, we recall that the concepts of homomorphism and isomorphism are very important in the
study of groups, rings, fields and vector spaces. The following two definitions show that module
homomorphisms and module isomorphisms behave much like we would expect given our experience
with algebra.

Definition. Let R be a ring and let M and N be R-modules. A function f : M → N is an
R-module homomorphism if and only if the following conditions hold:

• f(m1 +m2) = f(m1) + f(m2) for all m1,m2 ∈M

• f(α ·m) = α · f(m) for all α ∈ R,m ∈M .
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Definition. Let R be a ring M and N be R-modules and let f : M → N be an R-module
homomorphism. The function f is an R-module isomorphism if and only if f is one-to-one and
onto.

We end this section with the concept of a generator of a submodule. This is a generalization
of the span of vectors in linear algebra and the concept of an ideal in ring theory.

Definition. Let R be a ring, let M be an R-module and let S be an subset of M . We define the
submodule of M generated by S by

〈S〉 = {
n∑

i=1

aisi|n ∈ N, ai ∈ R, si ∈ S, 1 ≤ i ≤ n}.

Definition. Let R be a ring, let M be an R-module and let S be an subset of M . We define the
generators of 〈S〉 to be the elements of S. We say M is finitely generated if and only if
M = 〈S〉 where S is a finite set. Finally, we say M is cyclic if and only if M = 〈{m}〉 for some
m ∈M .

Definition. Let R be a ring, let M be a finitely generated R-module and let S be an subset of M .
We define the rank of M to be the minimum number of generators of M . We denote the rank of
M by rank(M).

We note that the concept of a cyclic R-module generalizes the concept of a cyclic group since
an abelian group is cyclic if and only if it is a cyclic Z-module. We also note that in a PID R
regarded as an R-module, every R-submodule has a rank of one since submodules correspond to
ideals and since every ideal can be written as a principal ideal.

3 Predictable yet Necessary Theorems

We have the three isomorphism theorems for both groups and rings. Since modules generalize
both abelian groups and rings, we expect to have three isomorphism theorems for modules as well.
We will state and prove the first isomorphism theorem, which we will use later in this paper, and
we will just state the second and third isomorphism theorems for modules since their proofs are
similar to the proofs of the second and third isomorphism theorems for groups.

Theorem 1. (First Isomorphism Theorem) Let R be a ring and let M and N be R-modules
and let f : M → N be an R-module homomorphism. Then M/Ker(f) ∼= Im(f).

Proof. From the first isomorphism theorem for groups, we have that f̂ : M/Ker(f) → Im(f)
defined by f̂(m + Ker(f)) = f(m) is a well defined isomorphism of abelian groups. We just need
to verify that f̂ is an R-module homomorphism. Note that for all α ∈ R and for all m ∈M

f̂(α ◦ (m+ Ker(f))) = f̂(α ·m+ Ker(f)) = f(α ·m) = α · f(m) = α · f̂(m+ Ker(f))
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Theorem 2. (Second Isomorphism Theorem) Let R be a ring, let M be an R-module and
let N and P be R-submodules of M . Then

(N + P )/P ∼= N/(N ∩ P ).

Theorem 3. (Third Isomorphism Theorem) Let R be a ring, let M be an R-module and let
N and P be R-submodules of M with P ⊂ N . Then

M/N ∼= (M/P )/(N/P )

4 Direct Products

We are working toward a theorem about the representation of finitely generated modules over a
PID, which is a generalization of the fundamental theorem of finite abelian groups. Just as we
required a notion of the direct product of groups in order to state the fundamental theorem of
finite abelian groups, we will also require a notion like a direct product for modules in order to
state the representation theorem. This motivates the following definition.

Definition. Let R be a ring and let M1 . . .Mn be a finite number of R-modules. Define addition,
denoted by +, and scalar multiplication, denoted by ◦, on the Cartesian product M1× . . .×Mn by,
for xi, yi ∈Mi, i ∈ N, 1 ≤ i ≤ n,

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

and for α ∈ R
α ◦ (x1, . . . , xn) = (α · x1, . . . α · xn)

then the Cartesian product M1× . . .×Mn is an R-module with addition + and scalar multiplication
◦ which we call the direct sum of M1 . . .Mn. We denote the direct sum of M1 . . .Mn by

M1 ⊕ · · · ⊕Mn

The following theorem will be useful in the next section

Theorem 4. Let R be a ring, let M be an R-module, and let M1, . . . ,Mn be submodules of M
such that

• M = M1 + · · ·+Mn

• for 1 ≤ i ≤ n,
Mi ∩ (M1 + · · ·+Mi−1 +Mi+1 + · · ·+Mn) = {0}

then
M ∼= M1 ⊕ · · · ⊕Mn.
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Proof. Define a map fi : Mi →M by fi(x) = x for all x ∈Mi and let f : M1 ⊕ · · · ⊕Mn →M by

f(x1, . . . , xn) = fi(x1) + · · ·+ fn(xn) = x1 + · · ·+ xn.

It can easily be shown that f is an R-module homomorphism. By the first condition in the
hypotheses, we have that f is onto. Now take (y1, . . . , yn) ∈ Ker(f). Then y1 + · · · yn = 0, and we
have

yi = −y1 − · · · − yi−1 − yi+1 − · · · − yn

and thus
yi ∈Mi ∩ (M1 + · · ·+Mi−1 + · · ·Mi+1 + · · ·+Mn) = {0}

by the second hypothesis. Thus (y1, . . . , yn) = 0, so that Ker(f) = {0} and thus f is one-to-one.
Therefore f is an isomorphism and the proof is complete.

5 Free Modules

Recall Example 1.1, where we showed that not every module has a basis. The power of a basis
lies in its ability to express an infinite set with a finite collection of elements. This is such a nice
property that we will restrict our attention to modules with bases. First, we formalize the language
from linear algebra we used in the first example.

Definition. Let R be a ring and let S be a subset of the R-module M . We say S is linearly
independent over R if

λ1x1 + . . . λnxn = 0

implies that λi = 0, where λi ∈ R and xi ∈ S for i ∈ N, 1 ≤ i ≤ n.

Definition. Let R be a ring and let S be a finite subset of the R-module M . Then S is a basis
of M if and only if M = 〈S〉 and S is linearly independent over R.

Now that the notion of basis is formalized, we can formalize the notion of a free module.

Definition. Let R be a ring and let M be an R-module. Then M is free if and only if M has a
basis.

We will now show that free modules act a lot like vector spaces, but recall that not every
module is free. Suppose that M is a free module with basis vi, i ∈ N, 1 ≤ i ≤ n. Now examine
the submodule generated by vj, 〈{vj}〉, for some j ∈ N, 1 ≤ j ≤ n. As we have discussed, we can
view R as an R-module. Define a function φj : R→ 〈{vj}〉 by

φj(r) = rvj.

We note that φj is a homomorphism since φj(a1r1 + a2r2) = (a1r1 + a2r2)vj = a1r1vj + a2r2vj =
a1φj(r1) + a2φj(r2). φj is in fact an isomorphism since the map is clearly onto and since {vj} is

7



Modules Dylan Poulsen

a linearly independent set, the kernel of φj is 0, which means the map is one-to-one. Since the vi

generate M , it is the case that M = 〈{v1}〉+ . . .+ 〈{vn}〉 and that

〈{vi}〉 ∩ (〈{v1}〉+ · · ·+ 〈{vi−1}〉+ 〈{vi+1}〉+ · · ·+ 〈{vn}〉) = {0}

by the linear independence of the vi. By Theorem 4, we have that M is a direct sum of the
submodules generated by the vi. But 〈{vi}〉 is isomorphic to R, which leads to the following
interpretation of a free module: A free module is a direct sum of isomorphic copies of the ring R.
Therefore, we can interpret a free module as a list of n elements of R (relative to a basis), with
scalar multiplication and addition performed component-wise, which is exactly how we think of a
vector in a vector space.

In linear algebra, a key theorem states that every basis of a vector space has the same cardinality,
which allows the dimension of a vector space to be well defined. If we have a commutative ring,
or more generally a Noetherian ring, as our underlying ring for our free module, then every basis
has the same cardinality, which means it has a well-defined rank. Examples which violate this
property exist, but are sufficiently detailed and lengthy to omit.

We conclude the discussion of free modules by noting that given a ring R, any finite R-module
N can be expressed as the R-homomorphic image of a free R-module. Take a set of generators
{yi|1 ≤ i ≤ k, k ∈ N} of N (or all of N if a proper subset of generators cannot be found). Now
construct a free R-module with k basis elements {xi|1 ≤ i ≤ k, k ∈ N}. Finally, for each i,
1 ≤ i ≤ k, map each xi to each yi. Applying the first isomorphism theorem to this statement,
if we ‘mod out’ by the kernel of the homomorphism, then any finite R-module is isomorphic to a
quotient R-module of a free module.

6 Matrices and Smith Normal Form

Now that we have an interpretation of free modules which agrees with our interpretation of vectors,
we naturally want to know if matrices have a ‘nice’ interpretation in terms of free modules. Just as
matrices in linear algebra represent homomorphisms between vector spaces, matrices in the study
of modules represent homomorphisms between free modules.

6.1 Example: Turning homomorphisms into matrices

Let R be a ring, let M be a free R-module with rank(M) = m and basis {v1, . . . , vm} and let N
be a free R-module with rank(N) = n and basis {w1, . . . wn}. Let f : M → N be an R-module
homomorphism. Then for some j ∈ N,1 ≤ i ≤ m, f(vi) ∈ N and therefore can be written as a
linear combination of basis elements of N

f(vi) =
n∑

j=1

aijwj

where aij ∈ R. If we let aij be the entry in row i, column j of a matrix, then we have a matrix
representation of the homomorphism.

8



6.2 Motivation for Smith Normal Form Modules Dylan Poulsen

We note that matrix multiplication as we know it can be viewed as a composition of free R-
module homomorphisms if and only if R is commutative. Since commutative rings also have a
well-defined rank, we will restrict our attention to commutative rings from now on.

6.2 Motivation for Smith Normal Form

We motivate the Smith normal form with the problem of trying to relate basis elements {x1, . . . xn}
of a free R-module M of rank n to the generators {u1, . . . , um} with m ≤ n of a finitely generated
submodule. The generators of the submodule will naturally have a representation relative to
the basis elements. We would like to have a particularly nice form. Just as in linear algebra,

we can change bases from x =
(
x1 . . . xn

)T
to y =

(
y1 . . . yn

)T
with multiplication by an

invertible matrix P so that y = Px. We can also change the generators from v =
(
v1 . . . ym

)T
to w =

(
w1 . . . wm

)T
with multiplication by an invertible matrix Q. Since the generators are

linear combinations of the basis elements, we have that

U = AX

where A is a matrix of the coefficients of the basis elements in the linear combination. By the
definitions above, we have

V = QU = QAX = QAP−1Y

so the new matrix of coefficients is QAP−1. The crux of Smith normal form is that there is a very
nice choice for Q and P such that the new generators relate nicely with the new basis elements.
More precisely, The Smith normal form of the matrix of coefficients B = QAP−1 has the property
that bij = 0 for i 6= j and bii = bi 6= 0 for i = j. Additionally, bi|bi+1 for all i. Therefore each
generator is a scalar multiple of a new basis element.

We quickly note that we have to be careful when we say invertible matrix. The inverse of a
matrix with entries in a ring R must also have entries in a ring R. Therefore, if we are working
with a matrix over the integers, we require the inverse of the matrix to also have entries in the
integers. This restricts the invertible matrices over the integers to those with determinant ±1. In
a general integral domain, this restricts the invertible matrices to those with a determinant equal
to a unit.

6.3 Smith Normal Form

We now restrict our the attention of our base ring from commutative rings to principal ideal
domains. We will show how to obtain the Smith normal form in a PID by an example with the
principal ideal domain of the integers. We will not prove that the Smith normal form exists, but
our procedure should indicate that the process which we use to obtain the Smith normal form will
cease after finitely many steps. We use elementary row and column operators on the matrix to take
it into Smith normal form. If we do all the row operations to an identity matrix, and do all the
column operators to another identity matrix, we can find the matrices P and Q which change the
basis and the generators. Let us assume we have an Z-module M with basis {x1, x2, x3, x4}. Let K
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be a Z-submodule K generated by v1, v2 and v3 where v1 = 2x1+x2−3x4−x4, v2 = x1−x2−3x3+x4

and v3 = 4x1 = 4x2 + 16x4. Then we have the coefficients matrix

A =

2 1 −3 −1
1 −1 −3 1
4 −4 0 16

 .

We will now bring A into Smith normal form. We will indicate the operations used and the effects
on A and on two identity matrices.

I3 A I4

=

1 0 0
0 1 0
0 0 1

 2 1 −3 −1
1 −1 −3 1
4 −4 0 16




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



R1↔R2−−−−→

0 1 0
1 0 0
0 0 1

 1 −1 −3 1
2 1 −3 −1
4 −4 0 16




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



−2R1+R2;−4R1+R3−−−−−−−−−−−−→

0 1 0
1 −2 0
0 −4 1

 1 −1 −3 1
0 3 3 −3
0 0 12 12




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



C1+C2;3C1+C3;−1C1+C4−−−−−−−−−−−−−−−→

0 1 0
1 −2 0
0 −4 1

 1 0 0 0
0 3 3 −3
0 0 12 12




1 1 3 −1
0 1 0 0
0 0 1 0
0 0 0 1



−C2+C3;C2+C4−−−−−−−−−→

0 1 0
1 −2 0
0 −4 1

 1 0 0 0
0 3 0 0
0 0 12 12




1 1 2 0
0 1 −1 1
0 0 1 0
0 0 0 1



−C3+C4−−−−−→

0 1 0
1 −2 0
0 −4 1

 1 0 0 0
0 3 0 0
0 0 12 0




1 1 2 −2
0 1 −1 2
0 0 1 −1
0 0 0 1


= Q B P−1.

Note that we first brought the smallest integer to the (1, 1) entry, then made every other entry
in the 1st row and 1st column equal to zero. We then repeated the process for the (2, 2) entry.It
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is straightforward to check that QAP−1 = B, as desired. We therefore have a new basis for M
{y1, y2, y3, y4} and the generators for K are w1 = y1, w2 = 3y2 and w3 = 12y3. Since the wi generate
K and the yi, and hence the wi, are linearly independent, the wi form a basis for K. Therefore
K is a free Z-submodule. It should be no surprise that we implicitly use the Euclidean algorithm
in the conversion to Smith normal form, and hence the process can be extended to any Euclidean
domain.

7 Structure Theorem for Finitely Generated Modules Over

a PID

We now have enough vocabulary and theorems built up to prove the main structure theorem for
finitely generated modules over a PID. Once we have this in hand, we will see two known results
fall out as corollaries: the fundamental theorem of finite abelian groups and the classification of
finite dimensional vector spaces. We begin with a formalization of the consequences of Smith
Normal Form.

Theorem 5. Let R be a PID, let M be a free R-module with rank(M) = m ≥ 1 and let K be an
R-submodule of M . Then K is a free R-submodule and there exists a basis {y1, . . . , ym} of M and
nonzero scalars a1, . . . an ∈ R such that n ≤ m, ai|ai+1 for 1 ≤ i ≤ n, i ∈ N and {a1y1, . . . , anyn}
is a basis for K.

We omit the proof of this theorem, but the result should agree with the discussion following the
array of row and column operators in the previous section. We now prove the structure theorem
for finitely generated modules over a PID.

Theorem 6. Let R be a PID and let M be a finitely-generated R-module. Then there are ideals
I1 = 〈a1〉, . . . In = 〈an〉 of R such that In ⊂ · · · ⊂ I1 and

M ∼= R/I1 ⊕ · · · ⊕R/Im.

and hence M is a direct sum of cyclic modules.

Proof. By the last paragraph of Section 5, we have that M is the image of a free module N of rank
n under the homomorphism f . Let K = Ker(f) so that K is a submodule of N . By Theorem 5,
we have a basis {y1, . . . yn} for N and a corresponding basis {a1y1, . . . , amym} for K, with m ≤ n
such that ai|ai+1 for 1 ≤ i ≤ m. Set aj = 0 for m ≤ j ≤ n. So far we have

M ∼= N/K ∼=
〈y1〉 ⊕ · · · ⊕ 〈yn〉
〈a1y1〉 ⊕ · · · ⊕ 〈anyn〉

.

Now, consider the homomorphism φ : 〈y1〉 ⊕ . . .⊕ 〈yn〉 → 〈y1〉/〈a1y1〉 ⊕ . . .⊕ 〈yn〉/〈anyn〉 given by

φ((r1y1, . . . , rnyn)) = (r1y1 + 〈a1y1〉, . . . , rnyn + 〈anyn〉).
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Then clearly Im(φ) = 〈y1〉/〈a1y1〉⊕· · ·⊕〈yn〉/〈anyn〉. We also have that Ker(φ) = (r∗1a1y1, . . . , r
∗
nanyn) ∼=

〈a1y1〉 ⊕ · · · ⊕ 〈anyn〉 for r∗1, . . . r
∗
n ∈ R since

φ((r∗1a1y1, . . . , r
∗
nanyn)) = (r∗1a1y1 + 〈a1y1〉, . . . , r∗nanyn + 〈anyn〉) = (0 + 〈a1y1〉, . . . , 0 + 〈anyn〉).

By the first isomorphism theorem, we have

N/Ker(φ) ∼=
〈y1〉 ⊕ · · · ⊕ 〈yn〉
〈a1y1〉 ⊕ · · · ⊕ 〈anyn〉

∼= 〈y1〉/〈a1y1〉 ⊕ · · · ⊕ 〈yn〉/〈anyn〉 ∼= Im(φ).

We now note that 〈yi〉/〈aiyi〉 ∼= R/〈ai〉 by applying the first isomorphism theorem to the family of
maps θi : R→ 〈yi〉/〈aiyi〉 defined by

θi(r) = ryi + 〈aiyi〉

for 1 ≤ i ≤ n. Therefore let Ii = 〈ai〉. Then the fact that ai|ai+1 implies Ii+1 ⊂ Ii by Lemma 16.7
in Judson [4]. Putting everything together, we have

M ∼= N/K ∼=
〈y1〉 ⊕ · · · ⊕ 〈yn〉
〈a1y1〉 ⊕ · · · ⊕ 〈anyn〉

∼= (〈y1〉/〈a1y1〉)⊕ · · · ⊕ (〈yn〉/〈anyn〉) ∼= R/Ii ⊕ · · · ⊕R/In

where In ⊂ · · · ⊂ I1 as desired.

Corollary 1. Let V be a vector space of dimension n over a field F . Then since F is a field, it
has no proper ideals, so V ∼= F ⊕· · ·⊕F ∼= F n. This is the classification of vector spaces according
to dimension.

Corollary 2. Let R = Z. We have that any finite abelian group (recall that every abelian group
is a Z−module) can be written as the direct sum (direct product with Judson’s language [4]) of n
cyclic groups of the form Z/〈ai〉 ∼= Zai

which have order ai, where ai|ai+1 for 1 ≤ i ≤ n. This is
equivalent to the fundamental theorem of finite abelian groups, as the example below shows.

7.1 Example of Corollary 2

To find all groups of order 540 = 22335 (see Judson Chapter 7 Example 3), we note that the order
of a direct sum is the product of the individual summands, so a decomposition into a direct sum
satisfies a1 . . . am = 540 = 22335 and ai|ai+1 for 1 ≤ i ≤ m. Therefore each ai must be of the form
2j3k5l with 0 ≤ j ≤ 2, 0 ≤ k ≤ 3, 0 ≤ l ≤ 5 and the sum of the exponents of 2, for example,
in each prime factorization of each ai, must be 2. This corresponds to choosing partitions of each
exponent of each prime. There are two partitions of 2, three partitions of 3 and one partition of
1, so we have (2)(3)(1) = 6 possible groups. In the form of the theorem, these groups are given by

Z540

Z2 ⊕ Z270

Z3 ⊕ Z180

12
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Z6 ⊕ Z90

Z3 ⊕ Z3 ⊕ Z60

Z3 ⊕ Z6 ⊕ Z30

which can be reduced to the form given in Judson by noting that Zmn
∼= Zm⊕Zn when gcd(m,n) =

1.

8 Conclusion

Modules are weak generalizations of ideals, abelian groups and vector spaces. Although modules
are not always like vector spaces, we found that free modules possessed vector-like properties which
made them more familiar. Using the Smith normal form of a matrix over a PID and some basic
isomorphism theorems, we were able to prove the structure theorem for finitely generated modules
over a PID. This theorem generalizes the classification of vector spaces and the fundamental
theorem of finite abelian groups. These are not the only interesting examples that follow from the
structure theorem. With some more work, we could view linear transformations from one vector
space to another as modules over the polynomial ring F [x], where F is the field of scalars for the
vector spaces in question. This leads to many canonical forms, including Jordan canonical form.
We hope this introduction has sparked an interest in modules and will motivate the reader to study
them further.
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