Math 290 Name: M Dr. Beezer
Exam 2 % Spring 2012
Chapter V

show all of your work and explain your answerg fully. There is a total of 100 possible points. -

Use Sage culy $o row-reduce matrices and include these computations in your answers.

1. Determine if the vector y is in the span of the set S, {§). (15 points)
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2. Determine if the sets of vectors below are linearly independent or not. Be sure to provide sufficient justification,
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3. The set S below is the same as in Question 1. Find a linearly independent set T so that (T) = {5). (10 points}
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4. The vector y below is the same as in Question 1. Find a linear combination of the vectors in the set set T
(that you found in the previous question) that equals y. Comment thoughtfally on the relationship between
the results in Question I, the previous question, and this question. {10 points)
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5. Find a linearly independent set K whose span is the null space of the matrix A below. other R owilly e

be linearly independent and {R) = A(A)}. (10 points)

, ey @{} -5 o -
0 2 -8 5 -8 Q}@w&?gﬁ
0 -1 4 2 -5 @C}C}Qﬁ&
OG0 g ool

1 -3 7 -4 4

= %?)JS éﬁ
4y “theoene BAS




6. Given two vectors u, v &€ C™ define a new operation, called subtraction, by [u — v}, = [u], — [v],, 1 <i < m.

Prove that subtraction is not really anything new (because we can accomplish subtraction with operations we
already have) by showing that u —v = u + (—1)}v. (10 points)
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7. Referring to the result about subtraction from the previous question, prove that for o € € and u, v € C'™,
a{u—v)=au-—av. (10 points)
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8. Suppose that vi, vz € C™. Prove that <{.V1, Vo) = {{vy + va, vi — va}). (10 points)
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