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Math 290 Name: Kﬁﬁ Dr. Beezer
Bxam 3 Spring 2012
Chapter M
Show all of your work and ezplain your answers fully. There is a total of 100 possible points.
Use Sage only to row-reduce matrices or to compute extended echelon form, except where indicated in a problem
statement. Include the results of these computations in your answers and describe the input used.

L. Other than actually asking Sage to compute the inverse of the matrix A below, what Sage command could
you use to see that A has an inverse? Then computie the inverse of A only using just the reduced row-echelon
form command, .rref (), on an appropriate matrix. (You can create the “appropriate” matrix with any Sage
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commands you like.) (15 points)
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2. Determine a linearly independent spanning set for the column space of B in two different ways, meeting the
requirements given. {20 points)
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{b) The set should be obtained In the most computationally efficient manner possible.
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3. Consider the matrix B from the previcus question. {20 points)

{a) Use the matrix L from the extended echelon form to compute a linearly independent set whose span equals

the column space of 5.
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(b) Use the matrix L from the extended echelon form to compute a linearly independent set whose span equals

the left null space of B. T <)
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4. Suppose that A and B are hoth m % n matrices. Prove that (A + B)' = A" + B'. (15 points)
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5. When computing the extended echelon form of an m x n matrix 4 we compute (41, [BJ]. Prove that
J is nonsingular. {15 points)
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6. Suppose o € € is a scalar, 4 15 an m > n matrix and B Is an n x p matrix. Prove that (ad} B = A{aB). {
points)
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