Math 290 Name;
Fxam 7
Chapter R

Dr. Beezer
Spring 2012

Show all of your work and explain yvour answers fully, There is a total of 100 possible points.
You may use Sage to row-reduce matrices, solve systems of equations, compute determinants and compute eigen-
gtuff. Linear transformation routines may not be used as justification.

1. Compute a matrix representation of the linear transformation 7" with domain Py, the vector space of polynomials
with degree at most 1, and codomain Ms, the vector space of 1 x 3 matrices. Then illustrate the Fundamental
Theorem of Matrix Representation (FTMR) by using the representation to compute T (3 — 6x}. {No credit will
be given for using other methods to compute this output of the linear transformation.) {15 points)
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2. For the lnear transformation below, find a basis of the vector space M 80 that the matrix representation of §
relative to the basis is a diagonal matrix. Give the ensuing representation as well. (20 points)
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3. Consider the linear transformation R with domain Mis, the vector space of 1 x 2 matrices, and codemain F,
the vector space of polynomials with degree at most 1. (35 points)

R: My — P, R{la b)) =(3a+7b)+(2a+5b)z

{a) Build a matrix representation of R relative to the ba,ses B={[3 2,4 3]} and C={6+ Sw, 14+ ah
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(b) R is invertible (you may assume this). Compute the matrix representation of R~} relative the bases C
and D given in part (a).
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(¢} Consider two new bases, X = {[7 3],[2 1]} and ¥ = {1l +Qz, ~1 - z}. Form the changeof basis
masrix, {p x, from bads B to bd.‘-sl‘a X,

&@3 z‘n ?&(UH&}% f’»mm X_ }
0Ly 81 = f( Cisls 41271y = (7]

S
&0 C B '{S’ ‘%1

{(d) Compute the matrix representation of R relative to the bagses X and Y (in part (¢}) by using the represen-
tation from part {a) and change-of-basis matrices. No credit will be given for building this representation
via the definition of a matrix representation.
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4. We saw the following linear transformation on the previous exam. Suppose U is a vector space and p € C is
a scalar. Define the linear transformation T,: U — U by T}, (u) = pu. Describe, with justification, a matrix
representation of T. (15 points)
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5. Suppose that L7 is a vector space, B is a basis of U, T U — U/ is a linear transformation, and u ¢ I/ is an
eigenvector of T. Prove that the vector representation pg{u} is an eigenvector for the matrix representation
.ME;)B. {15 points)
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