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As students of Abstract Algebra, we have been exposed to multiple new

algebraic structures that generalize many of the ideas we have learned pre-

viously in our mathematical educations. Categories are another algebraic

structure that seeks to generalize many different areas in mathematics and

provide a means for studying relationships between them. Just as we have

been able to prove theorems that apply to many different kinds of mathe-

matical objects through the study of Groups and Rings, the goal of Category

Theory is to prove results about Groups and Rings themselves, as well as

other fields of Mathematical study.

Just as Groups and Rings have a certain axiomatic structure, Categories

have their own axomatic structure. A Category is composed of a collection of

objects, and a collection of arrows. The collection of objects in a category
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C will be denoted C0, and the collection of arrows in C will be denoted C1.

The objects and arrows of a category meet the following criteria [1], [2]:

• Each arrow points from one object, known as the arrow’s domain, to

another object, known as the arrow’s codomain. An arrow f with an

object A as its domain and an object B as its codomain will be denoted

A
f−→ B, when not denoted simply as f .

• For any two arrows A
f−→ B and B

g−→ C, the composition of f and

g A
g◦f−→ C is defined such that g ◦ f is also an arrow in C.

• For every object A, there exists an identity arrow A
1A−→ A.

• If A
f−→ B, then f ◦ 1A = f and 1B ◦ f = f .

• Composition of arrows is associative, i.e., for A
f−→ B, B

g−→ C, and

C
h−→ D, (h ◦ g) ◦ f = h ◦ (g ◦ f).

There are a few important things to note before continuing. First, arrow

composition is only defined if the codomain of the first arrow is the domain

of the second arrow. Also, the order of arrow composition is written from

right to left, with the first arrow on the right. As a result, we should read

f ◦ g as “f following g.”[1]

Now, for our first example, let’s apply the concept of a Category to an

algebraic structure with which we are all familiar: Groups. There is a Cat-

egory commonly referred to as Grp with groups as the objects and group

homomorphisms as the arrows.[2]
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Proof. • In Group Theory, we have also used the words domain and

codomain in relation to group homomorphisms, to refer to the group

from which a homomorphism takes group elements and the group to

which a homomorphism takes group elements, respectively. We will

link these notions of domain and codomain in the natural way to the

domains and codomains of the arrows in Grp. Thus, every arrow in

Grp has a domain and a codomain.

• If φ is a group homomorphism from (G, ·) to (I, ∗), and ψ is a group

homomorphism from I to (J, ?), then for g, h ∈ G,ψ ◦ φ(g · h) =

ψ(φ(g · h)) = ψ(φ(g) ∗ φ(h)) = ψ(φ(g)) ? ψ(φ(h)) = ψ ◦ φ(g) ? ψ ◦ φ(h).

Thus, the composition of two homomorphisms is itself a homomor-

phism, so we can define the composition of two arrows in Grp as the

usual composition of group homomorphisms.

• The identity function in a group (G, ·) is a group homomorphism, since

for g, h ∈ G, idG(g · h) = g · h = idG(g) · idG(h). Thus, we can let

the identity function idG of a group G be the identity arrow 1G for the

object G in Grp.

• Given a group homomorphism φ from G to H, for g ∈ G, idH ◦ φ(g) =

idH(φ(g)) = φ(g), and φ ◦ idG(g) = φ(idG(g)) = φ(g). Thus, our

identity arrows 1H and 1G compose appropriately with arrows in Grp.

• Consider three group homomorphisms δ from C to D, ψ from B to

C, and φ from A to B. For g ∈ G, δ ◦ (ψ ◦ φ)(g) = δ(ψ ◦ φ(g)) =
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δ(ψ(φ(g))) = δ ◦ψ(φ(g)) = (δ ◦ψ) ◦ φ(g). Thus, composition of arrows

in Grp is associative.

As Grp meets the criteria of a category, we can conclude that Grp is, in

fact, a category.

There is also a category commonly known as Rng, that has rings as its

objects and ring homomorphisms as its arrows.[2] The proof that Rng is a

category is entirely similar to the proof that Grp is a category.

Now let’s define two important properties that arrows can have in a cate-

gory. An arrow A
f−→ B is mono if for any two arrows g and h with domain

C and codomain A, f ◦g = f ◦h implies that g = h. In other words, f is mono

if you can “cancel” f from any equation of two arrow compositions where f

is the second arrow in both compositions (remember that the second arrow

in a composition is found on the left). The second important property of

arrows is a sort of converse to the property mono. An arrow A
f−→ B is epi

if for any two arrows g and h with domain B and codomain C, g ◦ f = h ◦ f

implies that g = h. So f is essentialy epi if you can ”cancel” f from any

equation of two arrow compositions where f is the first arrow (the one on

the right) in both compositions.

In Rng, if an arrow is mono, then it is injective.

Proof. Consider a mono arrow A
f−→ B. Suppose for the purposes of con-

tradiction that f is not injective. Now consider functions g and h from the

kernel of f , an ideal in A, to A, defined such that g takes every element of the

kernel of f to itself in A, and h takes every element of the kernel of f to 0A.[3]
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As, g(k1 +k2) = k1 +k2 = g(k1)+g(k2), and g(k1 ·k2) = k1 ·k2 = g(k1) ·g(k2)

for k1, k2 in the kernel of f , g is a ring homomorphism, and hence an ar-

row in Rng. Also, as h(k1 + k2) = 0A = 0A + 0A = h(k1) + h(k2), and

h(k1 · k2) = 0A = 0A · 0A = h(k1) · h(k2) for k1, k2 in the kernel of f , h is a

ring homomorphism, and hence an arrow in Rng. f ◦ g = f ◦ h is the ring

homomorphism that takes elements of the kernel of f to 0B. However, as f

is not injective, g 6= h, because the kernel of f is a nontrivial ideal in A. This

contradicts our hypothesis that f is a monomorphism. Thus, it must be the

case that f is injective.[4]

The proof that arrows in Grp are injective if they are mono is entirely

similar to the proof above, but normal subgroup is used in the place of ideal.

It is also true that an arrow in Grp is surjective if it is epi. It is not, however,

true that an arrow in Rng is surjective if it is epi. For example, take the

ring homomorphsm that takes integers to the same value, but as a rational

number. This arrow in Rng is epi, but it is certainly not surjective.

In Category Theory, there is a concept that is essentially for categories

what functions are for sets, and what homomorphisms are for groups and

rings. This concept is that of a functor. A functor points from a category C

to another category D, and consists of two opperations F0 and F1 that take

objects from C0 to D0 and arrows from C1 to D1 respectively. The operations

F0 and F1 of a functor F have the following properties: [2]

• For an arrow A
f−→ B in C1, it must be the case that F1(f) in D1 has

for domain F0(A) in D0 and for codomain F0(B) in D0, or F0(A)
F1(f)−→
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F0(B).

• For A
f−→ B and B

g−→ C in C1, F1(g ◦ f) = F1(g) ◦ F1(f).

• For A in C0, F1(1A) = 1F0(A).

One very simple example of a functor is the functor that takes rings in Rng to

the abelian groups in Grp formed under addition and takes ring homomor-

phisms to group homomorphisms that preserve the opperation of addition

in the two abelian groups. This functor and others like it are known as

“forgetful”, because they “forget” the structure of the first category.

Proof. • The first criterion of a functor is satisfied almost trivially in this

example. We have defined F0 such that rings get sent to the same set,

but with only addition defined on the set elements instead of both ad-

dition and multiplication. Similarly, we have defined F1 such that ring

homomorphisms get sent to functions of the same two sets, but that

only preserve addition, instead of preserving both addition and multi-

plication. Therefore, as the domain and codomain of a homomorphism

are essentially the same sets before and after the functor is applied, the

first criteria is satisfied.

• The second criterion of a functor is satisfied here for essentially the

same reason as the first. A homomorphism f in Rng1 is essentially

the same function as F1(f) in Grp1 because each homomorphism sends

the same set elements in its domain to the same set elements in its

codomain. Thus, it follows that the composition f ◦ g of two ring

6



homomorphisms is essentially the same function as the composition of

two group homomorphisms F1(f) ◦ F1(g).

• This functor sends the identity homomorphism of a ring to the identity

homomorphism of that ring’s abelian group under addition in the ring.

As this functor meets the criteria of a functor, it is, in fact, a functor.

Notice that there is no mention in the definition of a functor of a need

for every element of the first category to be sent to some element of the

second category. Thus, we can define another functor from Rng to Grp that

takes finite fields to their multiplicative groups, and homomorphisms of finite

fields to group homomorphisms such that a homomorphism of a finite field

gets sent to a group homomorphism that treats all of the set items the same,

but is no longer defined for the zero element of the domain, since there no

longer is a zero element in the domain.

We can see already from these few basic developments that Category

Theory is a broad topic that has much potential for applicability accross

many areas of mathematics. I hope that by exposing you to a few of the

basic terms and concepts of Category Theory I have given you a glimpse of

how the concepts we have studied in Abstract Algebra are related to each

other, and possibly, to many other fields of study in mathematics.
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