Exam 1 Chapter SLE

Show all of your work and explain your answers fully. There is a total of 100 possible points.

You may use Sage to row-reduce matrices, except in the question that asks you to row-reduce without Sage. No other use of Sage may be used as justification for your answers.

1. Solve the following system of linear equations and express the solutions as a set of column vectors. (15 points)

$$4x_1 - 3x_2 + 8x_3 = -3$$

$$-x_1 + x_2 - 2x_3 = 1$$

$$4x_1 - 4x_2 + 8x_3 = -4$$

$$2\,x_1 + x_2 + 4\,x_3 = 2$$

2. Solve the following system of linear equations and express the solutions as a set of column vectors. (20 points)

$$x_1 + x_2 + 3x_4 + 2x_5 + 4x_6 = 16$$

$$x_2 - 2x_3 + 3x_4 + x_5 + 3x_6 = 4$$

$$x_1 + 2x_3 + x_5 + x_6 = 12$$

$$-x_1 + x_2 - 4x_3 + 3x_4 + 2x_6 = -8$$

3. Determine if the matrix below is nonsingular or singular. Explain your reasoning carefully and thoroughly. (15 points)

Γ0	0	0	0	1	-1	2	-3
					2		
1	0	-5	1	-2	3	-3	5
-1	0	5	0	1	0	2	-4
-1	0	5	1	0	3	1	-3
1	0	-5	-1	3	-6	5	-6
1	0	-5	-1	0	-3	-1	3
$\lfloor -2 \rfloor$	1	6	-1	0	1	2	-2

4. Without using Sage, find a matrix B in reduced row-echelon form which is row-equivalent to A. It is especially important to show all of your work, so it is clear you have not used Sage. (20 points)

$$A = \begin{bmatrix} 1 & 1 & -1 & -6 & 2 \\ -1 & 0 & -2 & 4 & -2 \\ -2 & 0 & -4 & 9 & -3 \end{bmatrix}$$

5. Find all of the values of α for which the following system has a unique solution. (15 points)

$$x_1 - 3x_2 - x_3 = 3$$
$$-2x_1 + x_2 - 3x_3 = -1$$

$$x_1 + 2x_2 + \alpha x_3 = -1$$

6. Suppose that: (1) A is an $n \times n$ square matrix, (2) \mathbf{b} is a vector with n entries and (3) $\mathcal{LS}(A, \mathbf{b})$ has a unique solution. Prove that A is nonsingular. (15 points)

3