434 DEMO 21

Prof. Robert Beezer
Copyright 2012 All Rights Reserved

March 30, 2012
{{{ }}}

21 - Fields

Simple Field Extension, $\sqrt{2}$

Adjoin the square root of 2.

{{{ N.=QQ[sqrt(2)] N }}} {{{ N.polynomial() }}} {{{ N.degree() }}} {{{ V = N.vector_space()[0] V }}}

A More Complicated Field Extension, $\sqrt{ 2},\sqrt{3}$

A simple extension with a combination of the two roots.

{{{ K. = QQ[sqrt(2)+3*sqrt(3)] K }}} {{{ K.degree() }}}

Adjoin roots individually (a tower results).

{{{ M.=QQ[sqrt(2),sqrt(3)] M }}} {{{ b, c }}} {{{ M.base_field() }}}

“Flatten” the tower over the rationals.

{{{ L. = M.absolute_field() L }}} {{{ L.degree() }}} {{{ L.polynomial() }}}

${x}^{4} − 10{x}^{2} + 1 = {({x}^{2})}^{2} − 10{x}^{2} + 1$ has four roots, $ ±\sqrt{5 ± \sqrt{6}}$.

Factor this polynomial over L. First make the right ring of polynomials.

{{{ R. = L[] R }}}

And the right polynomial.

{{{ poly = z^4-10*z^2+1 poly.parent() }}}

And factor.

{{{ poly.factor() }}}

Now factor the polynomial of the extension K, but in L.

{{{ polyK = z^4 - 58*z^2 + 625 }}} {{{ polyK.factor() }}}

K and L are both vector spaces of degree 4 over the rationals, and it is easy to see that K is a subspace of L, so with facts from linear algebra we have K==L.

Minimal polynomial (over $\mathbf{Q}$) for $\sqrt{3} + \sqrt{7}$ is ${x}^{4} − 20{x}^{2} + 16$.

{{{ P.=NumberField(x^4-20*x^2+16) P }}} {{{ S. = P[] S }}} {{{ poly = y^4-20*y^2+16 poly.parent() }}} {{{ poly.factor() }}}

Now examine roots with symbolic routines. First define the algebraic element in question.

{{{ t = sqrt(3)+sqrt(7) }}} {{{ (t^3/4-5*t).expand() }}}

Three Extensions to a Splitting Field

{{{ p = x^4+x+1 }}}

An extension by adjoining one root, then a factoriztion of th polynomial in the extension field.

{{{ A.
= NumberField(p) Y. = A[] q = y^4+y+1 q.factor() }}}

Add a root of the cubic factor, and then obtain a factorization.

{{{ B. = NumberField(y^3 + a*y^2 + a^2*y + a^3 + 1) Z. = B[] r = z^3 + a*z^2 + a^2*z + a^3 + 1 r.factor() }}}

One more time, now based on the quadratic.

{{{ C. = NumberField(z^2 + (b + a)*z + b^2 + a*b + a^2) W. = C[] s = w^2 + (b + a)*w + b^2 + a*b + a^2 s.factor() }}}

Notice how the fourth root is a simple function of the other three, a+b+c.

{{{ D.=C.absolute_field() D }}}

The degrees of the extension are, successively, 4, 3, and 2, with a product for the full tower equalling $4! = 24$.

{{{ D.degree() }}}

Numerator has root $ − 1$, so we remove linear factor.

{{{ var('x') p = ((x+2)^5 - 1)/(x+1) p_irr = p.simplify_rational() p_irr }}} {{{ G. = NumberField(p_irr) G }}} {{{ G.degree() }}}

Polynomial spits in the extension G.

{{{ Y. = G[] q = y^4+9*y^3+31*y^2+49*y+31 q.factor() }}}

An Angle That Cannot Be Trisected

$20$ degrees, or ${π\over 9} $ in radians, creates an extension of the rationals with a degree that is not a power of $2$, and hence is not constructible. A trisection of a $60$ degree angle is equivalent to creating a right triangle with unit hypotenuse and one side length equal to $\mathop{ cos}\nolimits \left ({π\over 9} \right )$.

{{{ T = QQ[cos(pi/9)] T }}} {{{ T.degree().log(2) in ZZ }}} {{{ }}}

One Extension for an Entire Splitting Field

A Polynomial with Four Roots