
Advanced Encryption Standard and Ring Theory

Clifford Berger

Copyright c©2013 by Clifford Berger. This work is made available under the terms of the
Creative Commons Attribution 3.0 Unported License,

http://creativecommons.org/licenses/by/3.0/

1

The Advanced Encryption Standard was established as the modern standard for data
encryption in 2001. It is used to encode everything from classified government documents to
the traffic through your wifi router. The previous data encryption standard (DES) was first
established in 1977, but with the advance of technology DES became increasingly vulnera-
ble. Eventually the only truly secure way to use DES was to use it three times in encryption,
which was far too slow, and needless to say, we began to search for a better encryption stan-
dard. AES was chosen through a three year competition. Though sponsored by the U.S.
National Institute of Standards and technology (NIST), the competition hosted applicants
from numerous countries. The AES we use today is based on a cipher developed by two
Belgian cryptographers, Joan Daemen and Vincent Rijmen. Together they developed the
Rijndael cipher, which was selected as the most suitable encryption method for AES. AES
is just a version of the Rijndael cipher with the cipher block size restricted to 128 bits.

The Rijndael algorithm performs a set procedure to encrypt a 128 bit block of code. One
important property of AES is that it is what is called a symmetric or private key algorithm,
which means that the same key is used for encryption and decryption as opposed to a public
key cryptosystem. The Rijndael algorithm takes a 128, 192, or 256 bit key to encrypt each
block of code. The actions performed by the Rijndael algorithm utilize several key math-
ematical concepts from linear algebra and ring theory. As we move through the algorithm
we will see some very interesting connections between these subjects. In the context of this
article we will to focus most heavily on the application of ring theory in AES. Understanding
the mechanics of the Rigndael algorithm requires surprisingly little knowledge of cryptog-
raphy. The algorithm entails 10 to 14 repetitions of a simple four step process, with minor
differences in the first and last repetition or “round”. Each step of the algorithm is a sim-
ple action with mathematical calculations. We will explain cryptologic terms as they appear.

There are essentially three big ideas in cryptography and of course they apply in the case
of AES. The three big ideas are confusion, diffusion, and the use of a key. Confusion is the
method of essentially mapping each part of your code to something else, a classic example
of a basic confusion technique is the Julius Caesar cryptosystem which shifts each letter
in the message down three letters. For example the Caesar cipher would encode the word
“hello” as “khoor”. Diffusion is the act of permuting your code, which is just changing the
order of characters. An example of this would be writing your code in a matrix horizontally
from top to bottom, then rewriting your code with each column as a group of letters. The
third big idea of cryptography is using a key. If you do not use a key someone can decrypt
anything if they know how the cipher works. Today practically all cryptosystems use a key.
The methods of most cryptosystems can be Googled instantly, but if you do not have the
key then you cannot decrypt anything. The AES cryptosystem implements these simple
ideas but uses math to perform strong and efficient encryption. Let us walk through each
step of the algorithm and see just how it does this.

For the encryption process the Rijndael algorithm requires a plaintext block and key as
input. The very first step of the Rijndael algorithm is to load our code into 4× 4 matrices.
We call this the state matrix. We load our code into the state matrix by entering it top
to bottom from left to right. The Rijndael algorithm will apply the same operations to
each 4 × 4 matrix of code, so we will simply focus on how the cipher acts on one of these
matrices. As aforementioned, AES is designed to take 128, 192, or 256 bit keys, but for
simplicity’s sake we will consider the case with a 128 bit key. The algorithm will function

2

in the same way with a larger key, but with more repeated steps. We now load our key into
another 4× 4 matrix, again entering the key from top to bottom left to right. Each column
contains 4 bytes (32 bits) representing 4 characters, so for a 192 or 256 bit key we would
have a 4× 6 or 4× 8 matrix as the cipher key. Now for each entry in our plaintext matrix
we combine it with the corresponding entry of the key matrix using an operation called XOR.

In order to perform these operations we must first represent each character of our plain-
text and key with its corresponding binary code. The XOR operation, also know as the
“exclusive or” operation, takes two binary values of equal length and performs integer ad-
dition modulo 2 on each pair of digits in the same position. This means that it returns a 0
if both digits are the same and a 1 if the digits are different. For example 10110110 XOR
11111111 = 01001001. After applying XOR to each pair of corresponding matrix entries we
have a new 4 × 4 matrix containing binary codes for entries. This is called the add round
key step, but we will discuss that in detail later. Now we have a new state matrix like the
one below:


P N X E
L T R
A T E
I E H

XOR


1 B K H
2 I E E
8 T Y R

E

 =


a1,1 a1,2 a1,3 a1,4
a2,2 a2,3 a2,4 a2,1
a3,3 a3,4 a3,1 a3,2
a4,4 a4,1 a4,2 a4,3


Where ai,j is some binary code, and keep in mind that the letters here are actually binary

codes as well.

But this is just the beginning of the algorithm. It turns out that the Rijndael algorithm
actually uses a number of different keys derived from the original key we provided. This is
called key expansion, and the algorithm used to calculate the different keys is called the key
schedule. The originial key we provided is called the first round key, and the key schedule
calculates the new keys for the other rounds (there are 10 rounds with a 128 bit key). Note
that we consider adding the first round key as an action performed before the first round.
In each round we repeat a set procedure, but we will get to that soon. The key schedule is
perhaps the most interesting part of AES, this is the part where we really see the mathe-
matical computations behind the cipher. To get a general idea of what happens we will run
through the key schedule and then we can explain what actually happens.

The first thing we do to calculate the next round key is take the last column of the
current round key matrix and shift all entries up one slot, moving the top entry to the
bottom entry. Now we run the entries of this column through what is called the Rijndael
substitution box, or s box for short. S boxes are often used in private key cryptography to
provide confusion, the Rijndael s box is just one version. This s box maps every byte in the
column to a new byte, providing confusion for the cryptosystem. The Rijndael s box uses
key concepts of ring theory to perform this mapping, and we will discuss this in great detail
momentarily. Here is a graphical representation, but keep in mind entries are binary codes
and not letters.

1 B K H
2 I E E
8 T Y R

E

 −→


H
E
R
E

 −→


E
H
E
R

 −→


S box(E)
S box(H)
S box(E)
S box(R)

 =


b1
b2
b3
b4



3

Where bi is some binary code

Now we XOR the entries of this new column with what is called a round constant, this
is just a column vector that is different for each round. We finally XOR this with the first
column of the previous round key. The product of these operations will be the first column
of the new round key. The other three columns of our new key are much easier to calculate.
For the second, third, and fourth columns of our new key we simply XOR the second, third,
and fourth columns of our previous key with the new column we just calculated. To make
things clear here is a graphical representation, and please note the round constant entries
are represented in hexadecimal for ease of notation.

b1
b2
b3
b4

XOR


01
00
00
00

 =


c1
b2
b3
b4


Where c1 is some binary code. Note that b1 is the only entry altered by this operation,

this holds for the XOR operation on all round constants.
c1
b2
b3
b4

XOR


1
2
8

 =


d1
d2
d3
d4

 −→


d1
d2
d3
d4


This column vector on the right will be the first column of the new key. We XOR the last
three columns of the previous round matrix with this vector to get the last three columns

of the new key matrix.

We now have the key matrix for the next round, and the key for all future rounds are cal-
culated using this procedure. For a 128 bit key there are a total of 10 rounds (not including
when we XOR the state and the initial key) which means this procedure is repeated ten times
to produce ten different expanded keys in addition to our first round key. But we have not
explained what this S box is or what these round constants are. This is where ring theory re-
ally comes into play. Now that we have seen the S box used in AES we will see how it works.

Up to now we have been using a binary code to represent characters. A byte is just an
ordered set of eight bits, and each bit is represented by a binary value of 1 or 0. So a byte, or
binary code, is just a binary number with eight digits, giving us 28 = 256 different possible
bytes. Hexadecimal (base 16 decimal system) notation is frequently used in cryptography
because any eight digit binary numer can be represent with two digits in hexadecimal nota-
tion. It turns out that we can represent a byte using a degree 7 polynomial with coefficients
in Z2, the ring of integers modulus 2. This means there exists an invertible mapping from
binary values to polynomials of degree 7 or less. For example we would map the binary
value 10101011 to the polynomial x7 + x5 + x3 + x + 1. Since Z2 is a field we know that
Z2[x] is an integral domain.

We now have a ring of polynomials where all polynomials of degree 7 or less are repre-
sentations of binary values. Let us consider the set of just these polynomials from Z2[x] and
0 ∈ Z2[x]. We can easily see that these elements form an additive group since the sum of any
two elements will also be a polynomial of degree 7 or less, but the set of nonzero elements

4

in Z2[x] are not closed under multiplication. In most cases the product of two polynomials
will give us a new polynomial with degree greater than 7, which cannot properly represent
an eight digit binary value. What if we were to build a ring, or better yet a field, containing
only these polynomials representing binary values. This is easily accomplished by building
a principal ideal with an irreducible polynomial and forming the quotient ring of Z2[x] over
this polynomial. This ring must be field since we use an irreducible polynomial, and this
field is exactly what the Rijndael cipher uses for calculations.

The Rijndael cipher uses the irreducible polynomial m(x) = x8 +x4 +x3 +x+ 1 ∈ Z2[x]
to form the ideal and quotient ring. The Rijndael algorithm requires a structure for poly-
nomials of maximum degree 7, m(x) was chosen because it’s quotient ring in Z2 restricts

polynomials to degree 7 and it’s irreducibility makes this structure a field. This field, Z2[x]
m(x)

is commonly called the Rijndael Finite Field. Every element in this field is of the form
a7x

7 +a6x
6 +a5x

5 +a4x
4 +a3x

3 +a2x
2 +a1x+a0+ < m(x) > with 0 ≤ ai ≤ 1 so there are

a total of 28 = 256 elements in the field and all of them represent a distinct binary value.
Since this field contains 28 elements it is the Galois Field GF(28). We can now say we have
an invertible mapping from bytes to a finite field.

Now lets take this opportunity to look at addition in this field and how it relates to
the actions we have performed in the Rijndael algorithm. We previously introduced the
XOR operation for bytes, it turns out that this operation corresponds to polynomial ad-
dition in our field. If we add two polynomials together, we are just adding the coeffi-
cients of each term. But the coefficients are over Z2, so the sum of the pair of coeffi-
cients of each term will be 0 if both coefficients are the same (1 or 0), or 1 if the co-
effiecients are different. This is exactly what the XOR operation does with bytes. To see
this in action let us look at the example of XOR we used earlier and it us correspond-
ing polynomial addition in the field. 10110110 XOR 11111111 = 01001001 corresponds to
(x7 +x5 +x4 +x2 +x+ <>)+(x7 +x6 +x5 +x4 +x3 +x2 +x+1+ <>) = x6 +x3 +1+ <>.

The fact that we are in a field tells us that every nonzero element of the field has a
multiplicative inverse. The Rijndael algorithm uses this property as a foundation for the
cipher. Now that we have familiarized ourselves with the Rijndael Finite Field we can go
back and explain the substitution box from our key schedule. The S box is a mapping that
takes one byte value to another. Given a byte value, the S box function first maps the
byte to a polynomial in the field, then it calculates the multiplicative inverse and places the
coefficients in a vector, if the input byte is 0 it simply returns the zero vector. The algorithm
then multiplies this vector by a matrix and adds a constant vector to this matrix vector
product. It might be easier to think about the S box as a composition of functions, one that
provides the inverse of an element and one that plugs the coefficients of the polynomial into
the S box formula. The S box function is defined as follows:

S box(g) =



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





a0
a1
a2
a3
a4
a5
a6
a7


+



1
1
0
0
0
1
1
0


5

Where ai is the coefficient of xi in g−1. Note that S box returns a vector, the entries of
this vector form the output byte.

In the context of cryptography the S box can be considered as a sort of lookup table.
The S box maps every byte to a certain output regardless of the first round key or the
plaintext to be encrypted, so the input/output data can be loaded in a table. It is much
more time efficient for a computer to lookup the output for a certain input than to actually
run the S box calculations every time. We should also note that since we are working in a
finite field a computer can easily brute force the inverse of a polynomial instead of trying
to use an algorithm to calculate the inverse.

We have now covered all aspects of the key expansion process except for the round con-
stants. The round constant for any round is calculated from the previous round constant.
Earlier we used the first round constant, which is just a vector of size four with the binary
value 1 in entry one and 0 for the other three entries. The next round constant is calculated
by taking this first entry of the current round constant and converting it to a polynomial
in the field. Then we multiply this polynomial by x, convert it back to a byte, and finally
place it in the first slot of a size four vector with the 0 byte in the last three entries. All
round keys have 0 in the last three entries of the vector. This process is repeated until we
have calculated all ten round constants (there can be up to 14 for a 256 bit key).

Now that we have covered key expansion and the Rijndael substitution box, we can
continue through the Rijndael algorithm and see the procedure for one round of AES en-
cryption. The last step we performed in the was performing the XOR operation on our
plaintext bytes and our first round key, the resulting matrix is our current state matrix.
We can now perform the next step, called substituting keys. This is considered the first
step of the first round, adding the first round key is done before the first round actually
starts. Now that we understand the S box, this is very straightforward. We apply the S box
function to every entry of the state matrix, mapping every byte in the matrix to something
new. We now have a new state matrix and have completed this step of the algorithm. This
step provides the cryptologic confusion we discussed earlier, so in every round we blur the
relationship of each byte.

The next step in this round is called the shift rows step. This step is just permuting the
state matrix in a certain way. The first row of the matrix is left unaltered in this step. In
the second row each entry is moved one entry to the left with the leftmost entry wrapping
around to the rightmost entry. In the third row each entry is moved two to the left, again
with the 2 leftmost entries wrapping around to the right side. As you might expect in the
third row we simply shift each entry three entries to the left, wrapping around yet again. We
have now completed this step and have a new state matrix with the same bytes in different
places. The purpose of this step is to provide the big idea of diffusion we discussed.

a1,1 a1,2 a1,3 a1,4
a2,2 a2,3 a2,4 a2,1
a3,3 a3,4 a3,1 a3,2
a4,4 a4,1 a4,2 a4,3

 −→


a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4



6

The next step is almost as interesting as the key schedule. This step is called the mix
columns step, and it is so interesting because it can be performed either by using matrix
multiplication or polynomial multiplication. Here we get to see how the two relate in this
context. Since it is easier to understand we will start with the matrix multiplication method
and then see how it corresponds to polynomial multiplication. The matrix multiplication
method takes each column of the state matrix as a vector and runs it through an invertible
linear transformation before returning it to the state matrix. The new column is calculated
by: 

y0
y1
y2
y3

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2




x0

x1

x2

x3


Where vector x is the column vector from the old state matrix and y is the new column.

Note that the mix columns matrix is nonsingular and therefore invertible.

The other method using polynomials is much more interesting. This method takes each
column of the state matrix and converts it to a polynomial of degree 3 or less with coefficients
in GF (28). This means that instead of having a binary value of 1 or 0 we have byte values
as coefficients. We now take this polynomial representing the column and multiply it by
a fixed polynomial c(x) = 3x3 + x2 + x + 2 modulo x4 + 1. c(x) and x4 + 1 are coprime
so c(x) is an invertible polynomial. The coefficients of the resulting polynomials are now
the new entries of that column of the state matrix. To see how this relates to the matrix
multiplication method we will expand this equation.

b(x) = (3x3 + x2 + x + 2)(ax3 + bx2 + cx + d) mod x4 + 1

= 3ax6 + ax5 + ax4 + 2ax3 + 3bx5 + bx4 + bx3 + 2bx2 + 3cx4 + cx3 + cx2 + 2cx

+ 3dx3 + dx2 + dx + 2d

= (2a + 3b + c + d)x3 + (a + 2b + 3c + d)x2 + (a + b + 2c + 3d)x + 3a + b + c

+ 2d mod x4 + 1

Where b(x) is the polynomial with coefficients for the new column and a, b, c, and d are the
entries of this column from the state matrix.

The coefficients of this polynomial provide an explicit formula for the entries of the new
column of the state matrix, and this formula is exactly the same as formula given by matrix
multiplication. We now see how the linear transformation matrix can be derived completely
from this operation of polynomial multiplication. It turns out that modular multiplication
with a fixed polynomial can be written as matrix multiplication. This step also provides
diffusion for the cipher. After applying this process to every column in the state matrix we
have completed the mix columns step and have now nearly completed the round. We now
proceed to the final step of the round, adding the round key.

Earlier we discussed how to perform the key expansion step, now we finally get to im-
plement the newly calculated round key in the algorithm. After familiarizing ourselves with
the other parts of the algorithm, I think most would agree this is the easiest step of all. All
we do now is take our state matrix and XOR it with the current round key we calculated.
This is exactly what we did in the very first step after loading our key and plaintext bytes

7

into matrices. But now we can think of these as matrices of polynomials in the Rijndael
Finite Field representing the binary values, and the XOR operation is equivalent to just
adding the matrices together. After we have done this we have finally completed a round of
AES.

Now all the algorithm is going to do is repeat the steps of substituting bytes, shifting
rows, mixing columns, and adding the round key until it reaches the final round. This final
round is exactly the same as all the other except we cut out the process of mixing columns.
In the final round the diffusion provided by the mixing columns step will not be passed
on to the next round, so performing this step would not increase security and would only
slow things down. Now we have completed the entire encoding process for AES. Like most
any other cryptosystem AES is just a method of obscuring the relationship between the
plaintext and cyphertext, diffusing this data, and making ensuring the cryptosystem cannot
be cracked without a key.

The decryption process is almost exactly the same as the encryption process, just in
opposite order and using the inverse of the transformations we used in the encryption al-
gorithm. Since this time we know we will need to calculate the keys for every round of the
algorithm, we will start with the key expansion procedure. This is exactly the same as the
procedure we described in the encryption algorithm, but we will be starting with the tenth
key and will work our way back.

Going in reverse order of the encryption algorithm, the first step we execute is the add
round key step. For our first round we will use the eleventh round key (since there are 10
round keys in addition to the first round key), and will use the (12 − i)th round key for
round i of the decryption process. Since the add round key step uses the XOR operation,
applying the same XOR operation will invert the add round key process.

Now we want to apply the inverse of the shift rows step. To do this we apply the shift
row step just like in the encryption process, but instead of shifting to the left we will shift
to the right. Now we are ready to perform the inverse of the substitute bytes step. Recall
that for this step we ran every byte in the state matrix through the Rijndael substitution
box, where the substitution box was a mapping to a new byte. The substitution box is a
bijective mapping and therefore must be invertible. The inverse of S box is:

S box−1(g) =



0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0





a0
a1
a2
a3
a4
a5
a6
a7


+



1
0
1
0
0
0
0
0


Where ai is the coefficient of xi in g−1

So the substitute keys step is performed by running all entries of the state matrix through
Sbox−1. We have now completed the first round of decryption. The following rounds repeat
this process, but we now must use the inverse of the mix columns step after we add the

8

round key and before we perform the shift rows step.

Earlier we established that the mix columns matrix was invertible and so the linear
transformation must be invertible. So to perform the inverse of this step we simply run
each column of the state matrix through the inverse linear transformation (multiplying the
column by the inverse of the matrix). We could also perform this step with polynomials
like we did in the encryption process, but we multiply our polynomial representation of the
column by c−1(x) = 11x3 + 13x2 + 9x + 14 mod (x4 + 1) instead of c(x). This will invert
the mix columns step from the encryption process.

So the decryption process for every round after the first is to add the round key, inverse
mix columns, inverse shift rows, and inverse substitute bytes. When the algorithm reaches
the final round it finishes by XORing our original key with the state matrix, and the result-
ing matrix contains the bytes of the plaintext originally encoded.

We have now covered all important aspects of how the Rijndael algorithm is used for
encryption and decryption in the AES. Note that this article focused on using a 128 bit key,
but if we were to use a 192 or 256 bit key the only major difference is that we would have
to do 12 or 14 rounds, respectively. This in turn would also modify the key expansion step.
Executing more rounds of the algorithm always trades performance for security. We can
conclude from this investigation of AES that ring theory has some great applications in the
real world, and the algebraic structure it supplies makes computing much more efficient. We
can now think of a letter as being represented by a distinct polynomial, and we also made
an interesting connection between matrix multiplication and modular multiplication with a
fixed polynomial. Overall the AES standard makes great use of mathematical concepts to
provide great security in encryption while also offering great performance.

9

Bibliography

Bhargav, Shrivathsa, Larry Chen, Abhinandan Majumdar, and Shiva Ramudit. “128-bit
AES decryption.” Columbia University. N.p., n.d. Web. 25 Apr 2013. http://www.cs.columbia.edu/ sed-
wards/classes/2008/4840/reports/AES.pdf

Federal Information Processing Standards Publication 197. United States National In-
stitute of Standards and Technology (NIST). November 26, 2001.

Moser, Jeff. “A Stick Figure Guide to the AES.” Moserware. N.p., 22 Sep 2009. Web.
25 Apr 2013. http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html.

Rijmen, Vincent, and Joan Daemen. The Design of Rijndael: AES. Springer, 2002.

10

