
An Introduction to Graph Homomorphisms

Davis Shurbert

Department of Mathematics and Computer Science

University of Puget Sound

May 1, 2013

1

Abstract

This paper aims to give a focused introduction to algebraic graph theory accessible to math-

ematically mature undergraduates. We will begin by giving some standard definitions, then

expanding our focus to specifically study properties of graph homomorphisms in the context

of constraint satisfaction problems (graph coloring in disguise). In particular, we will be dis-

cussing the idea of graph coloring by abstracting what it means for a graph to be colorable,

and expanding this abstraction to deal with more complex instances of the graph coloring

problem.

Introduction

Since we are going to be working in the field of graph theory, it is necessary to define precisely

what we mean by a graph (for the advanced reader, we will only be working with simple

graphs keeping definitions to a minimum, however the ideas presented will translate easily

into more complex definitions for graphs). A graph G consists of a set of vertices V (G)

and a set of edges E(G) represented by unordered pairs of vertices. It is important to note

that a graph may have many different geometric representations, but we just use these as

visualization tools and focus on V (G) and E(G) for our analysis. We define vertices x and

y to be adjacent if (x, y) ∈ E(G), for our purposes we will write x ∼ y to ease the notation

but let the reader note that this is not an equivalence relation. It comes as no surprise to

an algebraist that graphs have subgraphs, we say Y is a subgraph of X if V (Y) ⊆ V (X) and

E(Y) ⊆ E(X). A graph is complete if every vertex is connected to every other vertex, and

we denote the complete graph on n vertices by Kn. Finally, we define a graph with no edges

to be an independent set of vertices. [1]

Now, we will continue our definitions by applying the notions of isomorphisms and homo-

morphisms to graphs. An isomorphism between two graphs G and H is a bijective mapping

f : G 7→ H with the property

(x, y) ∈ E(G)⇔ (f(x), f(y)) ∈ E(H).[1]

This simple definition comes as no surprise to those who have worked with isomorphisms

in other contexts. We say that a graph isomorphism respects edges, just as group, field, and

vector space isomorphisms respect the operations of these structures. We now consider a

weakening of this definition to arrive at graph homomorphisms. A homomorphism from a

graph G to a graph H is defined as a mapping (not necessarily bijective) h : G 7→ H such

2

that

(x, y) ∈ E(G)⇒ (h(x), h(y)) ∈ E(H).[1]

We say that a graph homomorphism preserves edges, and we will use this definition to

guide our further exploration into graph theory and the abstraction of graph coloring.

Example. Consider any graph G with 2 independent vertex sets V1 and V2 that partition

V (G) (a graph with such a partition is called bipartite). Let V (K2) = {1, 2}, the map

f : G 7→ K2 defined as

f(v) =

1, if v ∈ V1
2, if v ∈ V2

is a graph homomorphism because no two adjacent vertices in G map to the same vertex in

K2, and thus our edges are preserved [1]. A specific homomorphism to K2 of this form is

illustrated by

G
1

4 5

6

2

3 1 7→ 1

2 7→ 1

3 7→ 1

4 7→ 1

5 7→ 2

6 7→ 2

K2
1 2

where the G is the domain and K2 is the codomain of the homomorphism. Notice that

both of the above graphs can be properly colored with two colors, as we will be returning to

this idea momentarily.

Graph Coloring

One of the more famous results in graph theory is the 4 color map theorem which states that

any conceivable map can be colored with 4 colors such that no two regions sharing a border

have the same color, but how could we go about proving such a thing? This next section

is devoted to giving a precise definition to a coloring of a graph, as well as giving a precise

mathematical meaning to the phrase “this graph is n-colorable.” As always, we begin with

3

a definition. A proper coloring of a graph G is an assignment of colors to V (G) such that

no two adjacent vertices have the same color. A graph’s chromatic number is the minimum

number of colors needed to properly color the graph. We say that a graph is n-colorable if it

can be properly colored with n colors. Here we arrive at our first theorem concerning graph

homomorphisms. [1]

Theorem 1. A graph G is r-colorable ⇔ there exists a homomorphism from G to Kr [1].

Proof. (⇒)

Assume G can be properly colored with r colors labeled {1, 2, . . . , r}. We label a generic

vertex v of G by vi if it is colored by i where 1 ≤ i ≤ r. Define a mapping h : G 7→ Kr

by h(vi) = ki where ki is the ith vertex in Kr (without loss of generality we can impose an

ordering on the vertices of Kr). We claim that this map is a graph homomorphism:

Let a, b ∈ V (G) and assume a ∼ b (a is adjacent to b)

⇒ a and b do not have the same color so a = ai and b = bj where i 6= j.

⇒ h(a) = h(ai) = ki 6= kj = h(bj) = h(b) so h(a) 6= h(b)

⇒ h(a) ∼ h(b) (the image of h is a complete graph)

Therefore, a ∼ b⇒ h(a) ∼ h(b) showing that h is a homomorphism from G to Kr.

(⇐)

Let h : G 7→ Kr be a graph homomorphism. For a given y ∈ V (Kr) define the set h−1(y) ⊆
V (G) to be

h−1(y) = {x ∈ V (G) | h(x) = y}.

It is important to remember that these sets might be empty. Let a, b ∈ h−1(y),

⇒ h(a) = h(b) = y (a, b ∈ h−1(y))

⇒ h(a) 6∼ h(b) (a vertex cannot be adjacent to itself)

⇒ a 6∼ b (contrapositive of a ∼ b⇒ h(a) ∼ h(b)).

So, for every y ∈ V (Kr) the corresponding h−1(y) is an independent subset of V (G).

Therefore, every element of h−1(y) can be colored using the same color. There are r vertices

of Kr, and the sets h−1(y) form a partition of the vertices of G (partition comes from

properties of a map, we can’t assign one input to two different outputs and every input must

map to some element of the codomain), so there are at most r colors needed to properly

color G. [1]

This theorem gives us a concrete mathematical interpretation of coloring a graph, but

the above result answers much more than the simple question of whether or not a graph is

n-colorable. As a simple consequence of this theorem, the chromatic number of a graph G

is the smallest integer r such that there exists a homomorphism from G to Kr. In addition

to this small logical step, a number of facts become apparent from the following corollary.

4

Corollary. A coloring of a graph G is precisely a homomorphism from G to some complete

graph.

If we view a homomorphism h : G 7→ Kr for some graph G as an assignment of colors to

the vertices of G, then h directly tells us how to create this coloring. For any a ∈ V (G), if

h(a) = ki then we simply assign color i from a set of r colors to vertex a. This process gives

us a unique coloring of G for every h. If we want to know how many proper colorings of G

we can create with r colors, we simply count the number of distinct homomorphisms from

G to Kr.

Example. Consider the following coloring of the Petersen graph P represented as a ho-

momorphism from P 7→ K3 where vertices of P map to their corresponding color in K3.

Given our previous discussion, it should be fairly obvious that this map is indeed a graph

homomorphism.

7→ a0

a1

a2

At this point, it is natural to wonder why graph coloring is important enough to warrant

such a careful study. One would hope that there are more applications of this process than

simply assigning colors to vertices, and indeed there are. Consider the problem of scheduling

final exams such that no student is scheduled to take two exams during the same period. We

can construct a graph G which has classes as its vertices, where two vertices are adjacent

if there is a student taking both classes. We now have a graphical representation G of the

current state our classes, and we wish to assign final periods to the vertices of G such that

no two adjacent vertices have the same period assignment (otherwise this would constitute

a scheduling conflict). Finding such a scheduling of our classes is equivalent to finding a

proper coloring of G, where each color represents a different exam period. [2]

There are seemingly infinite variations of the above problem. We can assign frequencies

to radio stations without causing interference arising from two geographically close radio

stations having the same frequency. We can help an airline company assign pilots to their

flights where each pilot is a color, each flight is a vertex, and each edge represents two flights

that cannot be piloted by the same person. We can make as many examples of these types

5

of problems as we want by simply inventing probable scenarios of this form. You might be

tempted to say that these scenarios are all the same problem worded differently, but instead

think of them as a family of problems that can all be solved using the same technique.

Our family of problems solvable by graph coloring is indeed expansive, but it feels quite

constrained because all of our solutions only consist of assigning n colors to a given graph. Let

us revisit our exam scheduling example by adding constraints to our optimal schedule. If we

want to ensure that no student is scheduled to take 2 exams in consecutive periods, we must

change the desired homomorphic image from a complete graph to a more restrictive graphical

representation of our optimal schedule. The rest of this section will discuss homomorphisms

in the context of this problem, as to make comprehension of the material easier. [2]

Example. If we have 6 final periods with exams already scheduled such that no student

must take consecutive exams, we can model this schedule as

1

6

5

4

3

2

where each vertex is a final exam period and

there exists an edge between vertices if a stu-

dent can be scheduled to to take an exam in

both time slots.

Once we have found a graphical representation of a schedule satisfying the constraints

of our problem, we must ask if such a scheduling is possible, and if so how can we achieve

it. To answer these questions we can again construct a graphical representation G of our

current classes (classes are vertices of G while edges represent classes with mutual students)

and find a homomorphism from G to our desired schedule represented by a graph H.

6

Example. Consider the following schedule assignment as a graph homomorphism h : G 7→ H

where

G =

1 2

3

4
5

6 7

13

9

10

12

11
8

h :

1 7→ 1

2 7→ 2

3 7→ 3

4 7→ 5

5 7→ 6

6 7→ 5

7 7→ 2

8 7→ 1

9 7→ 3

10 7→ 6

11 7→ 5

12 7→ 3

13 7→ 6

H =

1

6

5

4

3

2

This homomorphism creates a scheduling that satisfies our constraints because two ad-

jacent vertices in G (i.e. two classes that share at least one student) cannot be mapped to

vertices of the form (i, i+ 1 mod 6) due to the definition of graph homomorphisms. This is

equivalent to saying that no two classes that share at least one student can have their final

exams scheduled in consecutive time slots. Our original requirement that no two classes that

share students can be scheduled at the same time is still satisfied, because adjacent vertices

in G must be mapped to adjacent in H and no vertex is adjacent to itself.

Notice how period 4 is never used, showing that that H does not represent an optimal

schedule of final exam periods. With these specific constraints on our desired schedule, we

must find the smallest n for which there exists a homomorphism from G to Hn. We define

Hn to be the subgraph of Kn with edges (i, i+1 mod n) removed. It is useful to think of this

definition of Hn as if we have labeled the vertices of Kn as {1, 2, . . . , n} in increasing order

around the perimeter of Kn. However this interpretation is not necessary as all labelings of

Kn are isomorphic.

With the tools we have built so far, it now becomes easy to modify our constraints on our

optimal schedule. We can add and remove edges and vertices to our graph H (the graphical

representation of our desired schedule) depending on our new constraints.

Example. If our desired schedule has 6 periods, again with the constraint that no student

is scheduled to take two exams consecutively, we can modify this to include a lunch break

(so exams can be schedule on either side of this break without conflict), or a dinner break,

or both.

7

Lunch break

(between periods 3 and 4)

1

6

5

4

3

2

Dinner break

(between periods 5 and 6)

1

6

5

4

3

2

Both

1

6

5

4

3

2

To drive home the point, we arrive at our final example.

Example. Consider a group of displaced peoples whose entire country is now uninhabitable.

This country was often at civil war, with many different factions forming a complex network

of allies and enemies. We construct a graph G with the towns of this country as vertices,

and add edges between enemy towns. Now construct a graph H representing the open land

of the country which plans to adopt the refugees. Let the vertices of H be habitable regions

of the new county, all having enough resources to share with friendly neighbors. Place edges

between regions that have some sort of barrier between them. How can we assign groups of

refugees to the new land such that enemy factions have barriers between each other’s homes,

minimizing potential violence?

A homomorphism from G to H acts as such an assignment. Enemies in G (adjacent

vertices) cannot be moved to the same location in H, or to two locations that are easily

traveled between. If two groups of refugees are enemies in G then they must be placed with

barriers between them in H. In the language of our graphs, our proposed map must preserve

edges and is thus a homomorphism. A simple instance of this problem is modeled by

7→

where each vertex in G maps to its corresponding vertex in H. Notice than this is not an

optimal arrangement of our refugees because the black vertex in H is never used and we can

8

find a homomorphism from G to smaller subgraphs of H (namely, the subgraph consisting

of vertices {green, red, black} and edges {(green, red), (green, black)}).

The above example should convince you that our desired homomorphic image can take

on almost any form, depending on the complexity of the problem we are trying to solve. We

already know that the our original state G can be just as complex. From this observation, it

becomes natural to ask if there exists a homomorphism h : G 7→ H given graphs G and H. If

we can answer this decision problem (whether h exists or not), we might want to determine

an explicit h and count how many distinct homomorphisms are possible. Here we will end

our discussion of specific problems and arrive at these questions lying at the heart of this

area of mathematical research.

Homomorphisms

So, how can we find h : G 7→ H given arbitrary graphs G and H as inputs? We will not be

explicitly answering this question as it is still an open area of research, and any discussion

of an exact algorithm for this problem would be beyond the scope of this paper. Instead,

we will now be discussing the mathematics of graph homomorphisms in order to further

understand the complexity of this problem. As a result, we will discover specific instances

of G and H in which we can easily determine that there is no homomorphism from G to H.

However, we must first present a few more definitions.

To ease notation, we write G → H if there exists a graph homomorphism from G to

H. A clique of a graph G is a subgraph of G which is complete. We say that a graph has

clique number n, denoted ω(G), if the largest clique of G has n vertices. Just as χ(G) is the

smallest r such that G → Kr, ω(G) is the smallest n such that Kn → G. [2] We state this

as a theorem for consistency.

Theorem 2. For any graph G, ω(G) = r ⇔ r is the largest integer such that Kr → G. [2]

Proof. If G has a clique of size n labeled C, then any isomorphism from Kn to C induces

a homomorphism from Kn to G (the fact that C is isomorphic to Kn should be obvious,

considering they are both complete graphs on n vertices). Conversely, if Kn → G then each

vertex of Kn must have a unique image in G, where all of these images must be connected

in order to preserve the edges of Kn. These images must then form a clique of size n in G.

Given this necessary and sufficient condition, it directly follows that ω(G) = r ⇔ Kr → G

where r is maximal.

We have already defined the chromatic number of a graph G, denoted χ(G), as the

minimum number of colors needed to properly color G. The following theorem describes a

9

useful relationship between both χ(G) and χ(H), and ω(G) and ω(H) respectively, where

H is the codomain of a homomorphism from G.

Theorem 3. If G→ H then ω(G) ≤ ω(H) and χ(G) ≤ χ(H). [2]

Proof. The compositions of homomorphisms is again a homomorphism, i.e. G → H → K

implies G→ K. Given this fact,

Kω(G) → G→ H implies Kω(G) → H, so ω(H) is at least ω(G), and

G→ H → Kχ(H) implies G→ Kχ(H), so χ(G) is at most χ(H). [2]

Even with these simple results, we are beginning to make significant process in determin-

ing if, given graphs G and H, there is no homomorphism from G to H. We can compute

ω(G) and χ(G) for any graph G, although these computations might be difficult. Comparing

our results for G and H we can immediately tell if G does not map homomorphically to H.

We will finish our discussion of graph homomorphisms with a brief introduction to the

concept of homomorphism classes. If G ← H and H ← G we say that G ≡ H [2]. As one

might suspect, ’≡’ produces an equivalence relation. The relation is symmetric because the

identity map from G to G is an isomorphism and thus a homomorphism, transitive because

composition of homomorphisms is again a homomorphism, and reflexive by nature of our

definition. This equivalence relation forms equivalence classes of graphs, which we can use

to solve our decision problem. [2]

Since we are now dealing with equivalence classes, it is natural to ask if there are canon-

ical representatives of these classes. We define a core of a graph G to be the element of [G]

(homomorphism equivalence class of G) with the least number of vertices [2]. Given this

definition, we get some interesting results involving these cores.

1) G is a core ⇔ every endomorphism of G is an automorphism. [2]

2) Any graph (or homomorphism equivalence class) has a unique core unto isomorphism.

[2]

These results are certainly nontrivial, but we will not discuss the proofs here. [2] gives

sufficient proofs of these facts and a discussion of the topic of cores and homomorphism

equivalence classes in the context of classifying graphs, but these results are not crucial to

our discussion. Instead, let us examine why the above results might prove useful.

Since the number of vertices of the core of a graph G must be less than or equal to

|V (G)|, we assume it is more computationaly simple to find homomorphism from this core

to a desired H than using our original G. If we denote the core of G by C(H), it should be

clear that G→ H if and only if C(G)→ H. Therefore, we can refine our search for G→ H

10

for all graphs homomorphically equivalent to G. This is useful because cores have specific

properties that they do not share with generic graphs (fact 1 from above for example).

These results do not explicitly help us solve the problem of determining whether G→ H

because we are still faced with the problem of finding a core. This new problem may be just

as complex as our original, and if we solve it we still have not fully answered our question.

If we could easily find a core, we could then determine if H ≡ G (cores of homomorphism

classes are unique unto isomorphism) but even then we would be faced with an isomorphism

problem, which is again nontrivial. However, deciding whether or not G → H is true may

still be more challenging than deciding if C(G)→ C(H) is true, and the preceding are equiv-

alent. This ends our discussion of graph homomorphisms and their applications. However,

the reader is encouraged to pursue further reading on the subject through some suggested

texts bellow.

Further Reading

Readers who are new two graph theory are encouraged to pick up [1], as I found it an incred-

ibly helpful and enlightening read focusing on algebraic graph theory in general. Advanced

readers (or those specifically interested in graph homomorphisms) should consider reading

Graphs and Homomorphisms (Oxford Lecture Series in Mathematics and Its Applications),

written by Pavol Hell and Jaroslav Nesetril. The authors are well known for their contribu-

tions to this area of research, and the text is written at the master’s level. Note that this is a

fairly new area of research, only starting to become widely accepted during the past decade

or so. Here is a list of open problems as of 2008 on the subject of graph homomorphisms.

11

http://www.cs.elte.hu/~lovasz/problems.pdf

References

[1] Chris Godsil, Gordon Royle, Algebraic Graph Theory. Graduate Texts in Mathematics,

2001. ISBN: 0 387 95241 1

[2] Peter J. Cameron Graph homomorphisms Combinatorics Study Group Notes, September

2006 , Paper (Link)

[3] Norman Biggs, Algebraic Graph Theory. Cambridge Mathematical Library, 2nd edi-

tion,1993. ISBN: 0 521 45897 8

[4] Ronald C. Read, Robin J. Wilson, An Atlas of Graphs. Oxford Science Publications,

1998. ISBN: 0 19 853289

[5] Martin Dyer, Catherine Greenhill The complexity of counting graph homomorphisms ,

Paper (Link)

[6] William Stein, Graph Theory in Sage ,Talk (Link)

[7] Rob Beezer, Chris Godsil Explorations in Algebraic Graph Theory with Sage:

, Practice Problems (Link)

Author: Davis W. Shurbert

http://creativecommons.org/licenses/by/3.0/

12

http://www.maths.qmul.ac.uk/~pjc/csgnotes/hom1.pdf
http://pages.cs.wisc.edu/~jyc/880/Dyer-Greenhill.pdf
http://pages.cs.wisc.edu/~jyc/880/Dyer-Greenhill.pdf
http://vimeo.com/14046039
http://buzzard.pugetsound.edu/sage-practice/
http://creativecommons.org/licenses/by/3.0/

