Chapter V
Show all of your work and explain your answers fully. There is a total of 100 possible points.
You may use Sage to create and row-reduce matrices.

1. Determine if the set of column vectors, T, is linearly independent or not, including an accurate justification for your answer. (15 points)

$$
T=\left\{\left[\begin{array}{c}
-1 \\
-3 \\
0 \\
-2 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
2 \\
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
4 \\
7 \\
4 \\
3 \\
-2
\end{array}\right]\right\}
$$

2. Determine if the vector \mathbf{w} is in the set $U=\langle T\rangle$. (15 points)

$$
\mathbf{w}=\left[\begin{array}{c}
2 \\
-2 \\
-4 \\
-1
\end{array}\right]
$$

$$
T=\left\{\left[\begin{array}{c}
1 \\
-4 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
5 \\
-4 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
-7 \\
3 \\
-1
\end{array}\right]\right\}
$$

3. Find a linearly independent set R whose span is the null space of A (in other words, $\langle R\rangle=\mathcal{N}(A)$). Explain how you know your answer has the required properties. (20 points)
$A=\left[\begin{array}{lllll}-3 & 1 & -5 & 5 & 3 \\ -4 & 1 & -7 & 6 & 5 \\ -4 & 1 & -7 & 6 & 5\end{array}\right]$
4. Find a linearly independent set T with the same span as S (in other words $\langle T\rangle=\langle S\rangle$). (20 points)

$$
S=\left\{\left[\begin{array}{c}
1 \\
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
-2 \\
-5 \\
-3 \\
8
\end{array}\right],\left[\begin{array}{c}
-3 \\
1 \\
5 \\
-1
\end{array}\right],\left[\begin{array}{c}
4 \\
0 \\
-5 \\
0
\end{array}\right]\right\}
$$

5. Suppose that $\mathbf{u} \in \mathbb{C}^{n}$ is a vector. Prove that $1 \mathbf{u}=\mathbf{u}$. Provide reasons for each deduction and employ our indexing notation for entries of vectors. (Do not simply quote this as a result from Theorem VSPCV.) (15 points)
6. Suppose that $A=\left[\mathbf{A}_{1}\left|\mathbf{A}_{2}\right| \mathbf{A}_{3}|\ldots| \mathbf{A}_{n}\right]$ is a matrix and that both $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$ are solutions to $\mathcal{L S}(A, b)$. Prove that $\mathbf{x}-\mathbf{y}$ is a solution to the homgeneous system $\mathcal{L S}(A, \mathbf{0})$. (You may assume that vector subtraction is defined by $[\mathbf{x}-\mathbf{y}]_{i}=[\mathbf{x}]_{i}-[\mathbf{y}]_{i}$, for $1 \leq i \leq n$.) (15 points)
