
Math 420: Advanced Linear Algebra

Problem List

Spring 2014

Prof. Beezer

March 27, 2014

“You will get as much out of this course as you put into it.”
— RAB

1. (January 27) Let M24 be the set of all 2× 4 matrices.

(a) Endow M24 with “natural” definitions of vector equality, vector addition,
and scalar multiplication. (What would these be?) Prove that the result
is a vector space.

(b) Consider the subset

W =

{[
a b c d
e f g h

] ∣∣∣∣ a+ b− c+ 3 f − g − h = 0, a+ b− c− e+ 2 f + 2 g − h = 0, b− 4 c+ 5 d+ 2 e+ 4 f − 6 g = 0

}
Prove that W is a subspace of M24.

(c) Compute the dimension of W .

(d) Construct a linearly independent subset of W with four vectors that does
not span W .

(e) Construct a basis of W that is substantially different from the one you
used to determine the dimension.

(f) Construct a linearly dependent subset of W that also spans W .

2. (January 29) Consider the linear transformation, T : P4 → C5 defined by

T
(
a+ bx+ cx2 + dx3 + ex4

)
=


b− c+ 7e

−a− 4c+ d+ 6e
a+ 5c− d− 8 e
−a− 7c+ 2d+ 7e
−b+ c− 6e


(a) Prove that T is invertible (without using a matrix representation).

(b) Compute a formula for an output of the inverse linear transformation
(without using a matrix representation). In other words, find an expres-

sion for the right-hand side of T−1



u
v
w
x
y


 =.



(c) Compose T and T−1 (in both orders) to verify that you get the correct
identity linear transformation in each case. (Why are there two different
identity linear transformations in this problem?)

3. (January 31) In class we derived the main formula of Theorem EMP from a
very natural idea: composition of linear “morphisms” (aka linear transforma-
tions). Suppose that we therefore feel that this entry-by-entry expression for
the result of matrix multiplication should be taken as our definition of ma-
trix multiplication. In FCLA, Definition MM defines matrix multiplication as
repeated matrix-vector products (linear combinations, really). Convert Defi-
nition MM to a theorem, and then prove this result as a consequence of our
new (entry-by-entry) definition of matrix multiplication.

4. (February 3) Prove that the subspace X = 〈{x1,x2}〉 is invariant under the
linear transformation T . Finish the matrix representation begun in class of
T : C4 → C4, T (x) = Ax, relative to the basis B = {w1,w2,x1,x2}.

A =


−8 6 −15 9
−8 14 −10 18
1 1 3 0
3 −8 2 −11



w1 =


−7
−2
3
0

 w2 =


−1
−2
0
1



x1 =


−3
−1
1
0

 x2 =


0
−1
0
1


As part of showing that

C4 = W ⊕X = 〈{w1,w2}〉 ⊕ 〈{x1,x2}〉

construct the subspaces W and X in Sage and then use the .intersection()
method to verify that the intersection of the two subspaces is trivial. (What
does “trivial” mean here?)

5. (February 5) Express the matrix below as the product of a nonsingular matrix
and a matrix in reduced row-echelon form. Cite a theorem from FCLA that
establishes that the echelon form matrix is unique. Explain how we would
make a “canonical” choice for the nonsingular matrix and use that choice in
your answer. 

1 0 −1 −4 6 8 −2 7
0 1 −1 −1 2 2 −4 −4
1 1 −1 −2 3 3 −3 0
0 0 0 1 −2 −2 1 −2
0 2 0 1 0 −4 −5 −8
0 −1 1 0 0 0 3 6


[[1, 0, -1, -4, 6, 8, -2, 7], [0, 1, -1, -1, 2, 2, -4, -4], [1, 1, -1, -2, 3, 3, -3, 0], [0, 0, 0, 1, -2, -2, 1, -2], [0, 2, 0, 1, 0, -4, -5, -8], [0, -1, 1, 0, 0, 0, 3, 6]]

6. (February 5) For the proof of Theorem PTMT (FCLA, Section OD) we only
show that the product of two lower triangular matrices is again lower trian-
gular. Provide a proof that the product of two upper triangular matrices is
again upper triangular. Look to the proof of Theorem PTMT for guidance if
you need a hint.
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7. (February 5) Mimic the Sage worksheet from class and compute the LU de-
composition of the matrix below, step-by-step, using elementary matrices to
effect row operations.

E =


1 0 −1 −4 6 8 −2 7
0 1 −1 −1 2 2 −4 −4
1 1 −1 −2 3 3 −3 0
0 0 0 1 −2 −2 1 −2
0 2 0 1 0 −4 −5 −8
0 −1 1 0 0 0 3 6


Then solve the linear system Ex = b by forward-solving with L and then
back-solving with U .

b =


6
−2
1
−2
−4
4


(See SCLA for an example similar to this.)� �

[[1, 0, -1, -4, 6, 8, -2, 7],

[0, 1, -1, -1, 2, 2, -4, -4],

[1, 1, -1, -2, 3, 3, -3, 0],

[0, 0, 0, 1, -2, -2, 1, -2],

[0, 2, 0, 1, 0, -4, -5, -8],

[0, -1, 1, 0, 0, 0, 3, 6]]� �
8. (February 5) Write a routine in Sage (a Python function) that accepts a

coefficient matrix and a vector of constants and returns a solution to the linear
system. Begin by calling the .LU() method and then write an algorithm that
forward-solves and then back-solves. Can you see how each time you compute
the final value of a variable, you can update a partial computation of all the
as-yet undetermined variables?

Begin by assuming your input is a square matrix that does not require any
pivoting (an example follows that you can use to test your routine). Then
expand to accomodate pivoting (how?) and rectangular matrices.

F =


−1 0 −1 7 −3 1
0 1 1 −6 5 −6
−1 −1 −1 2 1 1
−1 0 −2 7 3 −8
−1 0 0 0 3 −3
1 0 1 −4 −1 3


[[-1, 0, -1, 7, -3, 1], [0, 1, 1, -6, 5, -6], [-1, -1, -1, 2, 1, 1], [-1, 0, -2, 7, 3, -8], [-1, 0, 0, 0, 3, -3], [1, 0, 1, -4, -1, 3]]

9. (February 10) Expanding on today’s discussion of exact linear algebra and
the “algebraic numbers” prove that α =

√
5/3 +

√
11/5 ∈ Q by finding (by

hand) a polynomial, with rational (or integer), coefficients that has α as a
root. Hint: Square α, rearrange, square, rearrange.

Verify your answer in Sage by first constructing α as a = QQbar(sqrt(5/3) + sqrt(11/5)).
Print a and explore the Sage documentation until you understand what the
question mark signifies in the printed representation of the number. Then
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compute the minimum polynomial of a with a.minpoly(). (Your answer will
have degree 4, but otherwise could differ slightly from Sage’s, either in scaling
or signs.)

10. (February 10) Expanding on today’s discussion of numerical linear algebra
read Trefethen’s essay, “The Definition of Numerical Analysis” (an appendix
in Trefethen and Bau).

11. (February 13) Prove that a Householder matrix is Hermitian, before studying
the proof in SCLA.

12. (February 13) See the exercise in SCLA that suggests “discovering” the House-
holder vector that will create a Householder matrix that “zeros out” most of
the vector. Solutions (of different styles) can be found in GVL and TB.

13. (February 13) See the exercise in SCLA that asks you to show that the two
choices of the Householder vector are orthogonal.

14. (February 19, due February 26) SCLA describes informally an algorithm for
obtaining a full QR decomposition with a sequence of Householder reflections.
Build a 4×4 matrix of random integers using M = random_matrix(QQ, 4, algorithm="unimodular", upper_bound=9)

which will make a matrix with determinant 1, and hence will be nonsingular.
Convert your matrix to QQbar with A = M.change_ring(QQbar). Now build
the the Householder reflections necessary to create R, form their product and
verify that you have a QR decomposition (including that Q is unitary).

Hints: Be sure all your vectors and matrices are over QQbar and stay that way
(and do not become symbolic matrices with sqrt() in them). The Sage ma-
trix method .change_ring() can help with this, as well as providing QQbar

to various constructors. You might find it convenient to create a Python
function to build a Householder matrix from a Householder vector, or to cre-
ate a Householder matrix from a part of a column. The Sage matrix method
.column() could be useful, and a Python slice like v[2:4] could also be handy.
Note that this exercise does not suggest building a totally general function
to create a QR decomposition of any old matrix. Just find the correct three
Householder matrices and do the right things with them. Extra credit: build a
rank 3 matrix and do it again to see what happens with a singular matrix. Use
M = random_matrix(QQ, 4, algorithm="echelonizable", rank=3, upper_bound=9).

15. (February 21) See three exercises in SCLA about computing complements and
orthogonal complements.

16. (February 21) This problem would be a great exercise for Math 290, and
will likely become an exercise in FCLA. Suppose {x1, x2, x3, . . . , xn} is an
orthogonal set of vectors. Prove the generalized version of the Pythagorean
Theorem ∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥
2

=

n∑
i=1

‖xi‖2.

17. (February 24) Derive the normal equations for Ax = b directly by using
techniques from calculus, as follows. Find a condition on x which is equivalent
to x minimizing φ (x) = 1

2‖Ax− b‖2. Why do we suggest the function φ?
How do you know your critical point is a minimum?

18. (March 5) Find four good exercises in the Invariant Subspaces section of the
Fundamentals chapter. The problem about the invariant subspaces of the
5× 5 matrix will be worked in class on Friday (March 7).

4



19. (March 10) Exercise 14 (current numbering, in the Generalized Eigenspaces
section) suggests you “practice” by computing a 2× 2 matrix representation
relative to the (invariant) generalized eigenspace for λ = −1.

20. (March) The matrix below will eventually be a good test for your Jordan
canonical form worksheet. In the meantime, it would also be a good matrix
to use for determining generalized eigenspaces and block diagonal representa-
tions (whether you exploit nilpotent properties, or not).� �

matrix(QQ, [

[-13, 4, -32, -8, -23, 72, -2, -3, 37, 26, -32, 38],

[19, -7, -24, -3, -29, 31, 8, 2, 24, -2, -1, 2],

[86, -43, 1, 9, -45, -60, 33, 11, -8, -63, 64, -69],

[34, -9, 13, 3, -1, -56, 7, 3, -18, -33, 37, -43],

[-31, 10, -8, -1, 5, 39, -5, -6, 13, 27, -30, 35],

[31, -20, 35, 16, 10, -86, 16, 5, -40, -39, 44, -50],

[-22, 3, -19, 0, -11, 56, 2, -3, 24, 27, -31, 37],

[-15, 9, -36, -11, -22, 76, -4, -3, 41, 28, -32, 38],

[47, -19, -20, -3, -39, 2, 16, 3, 18, -26, 24, -24],

[20, -15, -3, 5, -18, -7, 13, 2, 3, -12, 11, -11],

[-11, 1, 17, 8, 18, -21, 0, -1, -17, 1, -1, -1],

[-77, 39, -43, -20, 6, 139, -31, -10, 53, 78, -87,

97]

])� �
21. (March, due Friday April 4) Create a Sage worksheet which determines the

Jordan form of a matrix, by writing a single Python function which does this
and is named jordan(). Input will be a square matrix over the rationals
with integer eigenvalues. Output will be a square matrix of the same size
in Jordan form and similar (in the technical use of the word) to the input
matrix. I will test your routine on a matrix of my choice, so make sure all of
your computations are contained in a single function with the right name.

See the worksheet from class for Sage functions you might find useful in your
routine.

22. (February ??) See the exercise in SCLA about a projector in three dimensions.
It is based on an example that is part of our class discussions.
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