
Robert Beezer

Math 420, Spring 2014

1 Exact QR Decomposition

We form a QR decomposition of a random 4×4 nonsingular matrix, using the field of
algebraic numbers for square roots. We use Householder reflections to progressively
“zero out” the below-diagonal portions of columns of the matrix.

First we define a utility function which accepts a vector and returns the House-
holder matrix which will map it to a multiple of the first column of the identity
matrix.� �

def house(x):

"""A vector in , Householder matrix out , converts

vector to multiple of column 1 of identity

matrix """

R = x.base_ring ()

e = zero_vector(R, len(x))

e[0]=1

v = x - (x.hermitian_inner_product(x)^(1/2))*e

H = identity_matrix(R, len(v))

H = H -

(2/v.hermitian_inner_product(v))*matrix(v).transpose ()*matrix(v).conjugate_transpose ().transpose ()

return H� �
A check that the function works as advertised.� �
v = vector(QQbar , [1,2,3])

W = house(v)

W*v� �
A random 4 × 4 matrix with determinant 1.� �
A = random_matrix(QQ , 4, algorithm="unimodular",

upper_bound =9).change_ring(QQbar)

A� �
The first Householder matrix.� �
Q1 = block_diagonal_matrix(identity_matrix (0),

house(A.column (0)) )

Q1� �
And its effect on A.� �
R1 = Q1*A

R1� �
Second iteration.� �
Q2 = block_diagonal_matrix(identity_matrix (1),

house(R1.column (1) [1:4]) )

Q2� �



And its effect on A.� �
R2 = Q2*Q1*A

R2� �
third iteration.� �
Q3 = block_diagonal_matrix(identity_matrix (2),

house(R2.column (2) [2:4]) )

Q3� �
And its effect on A.� �
R3 = Q3*Q2*Q1*A

R3� �
Done. R3 is lower triangular. Since A was square, we do not need a fourth

iteration.
Now we package up the unitary matrices properly, setting both Q and R. Re-

member Householder matrices are Hermitian, so we do not have to transpose them,
and all our entries are real numbers, so we do not have to conjugate.� �

Q = Q1*Q2*Q3

R = R3

Q� �� �
Q.is_unitary ()� �� �
Q*R� �� �
Q*R - A� �� �� �

2


	Exact QR Decomposition

