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The Polar Decomposition
°

What is it?

Definition (Right Polar Decomposition)

The right polar decomposition of a matrix A € C™*" m > n has
the form A = UP where U € C"™*" is a matrix with orthonormal
columns and P € C"™*" is positive semi-definite.
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What is it?

Definition (Right Polar Decomposition)

The right polar decomposition of a matrix A € C™*" m > n has
the form A = UP where U € C™*" is a matrix with orthonormal
columns and P € C"™*" is positive semi-definite.

Definition (Left Polar Decomposition)

The left polar decomposition of a matrix A € C"™*™ m > n has the
form A = HU where H € C"*" is positive semi-definite and
U € C"™™ has orthonormal columns.
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Square Root of a Matrix

Theorem (The Square Root of a Matrix)

If A is a normal matrix then there exists a positive semi-definite
matrix P such that A = P2.
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Square Root of a Matrix

Theorem (The Square Root of a Matrix)

If A is a normal matrix then there exists a positive semi-definite
matrix P such that A = P?.

Proof.

Suppose you have a normal matrix A of size n. Then A is
orthonormally diagonalizable. This means that there is a unitary
matrix S and a diagonal matrix B whose diagonal entries are the
eigenvalues of A so that A = SBS™* where $*S = /,,. Since A is
normal the diagonal entries of B are all positive, making B positive
semi-definite as well. Because B is diagonal with real, non-negative
entries we can easily define a matrix C so that the diagonal entries
of C are the square roots of the eigenvalues of A. This gives us the
matrix equality C2 = B. Define P with the equality P = SCS*.
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The Theorem

Definition (P)
The matrix P is defined asv A*A where A €¢ C™*",




The Polar Decomposition
®00

The Theorem

Definition (P)
The matrix P is defined asv A*A where A €¢ C™*",

Theorem (Right Polar Decomposition)

For any matrix A € C™*", where m > n, there is a matrix
U € C™" with orthonormal columns and a positive semi-definite
matrix P € C"™" so that A= UP.
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A= |2 5 7| AAA= |38 105 75
1 4 6 25 76 89
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Example

3 8 2 14 38 26
A= |2 5 7| AAA= |38 105 75

1 4 6 25 76 89
S, St and C

0.0339 —3.0376 2.4687
{0.8690 ~0.3361 0.0294]
S1=

1 1 1
S=1-0.3868 23196 2.8017

0.0641 0.1486 —0.1946
0.0669 0.1875  0.1652

0.4281 0 0
C= 0 4.8132 0

0 0 13.5886
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1.5897 3.1191 1.3206
=vVA*A=S*CS~ 1= [3.1191 8.8526 4.1114
1.3206 4.1114 8.3876
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Example

1.5897 3.1191 1.3206
P=VA*A=S*CS~1=|3.1191 8.8526 4.1114
1.3206 4.1114 8.3876

0.3019 0.9175 —0.2588
U= | 06774 —0.0154 0.7355
—0.6708 0.3974  0.6262
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Example

1.5897 3.1191 1.3206
P=VA*A=S*CS~1=|3.1191 8.8526 4.1114
1.3206 4.1114 8.3876

0.3019 0.9175 —0.2588
U= | 06774 —0.0154 0.7355
—0.6708 0.3974  0.6262

3.1191 8.8526 4.1114
1.3206 4.1114 8.3876

0.6774 —0.0154 0.7355
—0.6708 0.3974  0.6262

[1.5897 3.1191 1.3206] [0.3019 0.9175 —0.2588
UP =
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Polar Decomposition from SVD

Theorem (SVD to Polar Decomposition)

For any matrix A € C™*", where m > n, there is a matrix

U € C™*" with orthonormal columns and a positive semi-definite
matrix P € C"*" so that A = UP.
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Polar Decomposition from SVD

Theorem (SVD to Polar Decomposition)

For any matrix A € C™*", where m > n, there is a matrix

U € C™" with orthonormal columns and a positive semi-definite
matrix P € C"™" so that A= UP.

A= UsSV*
= Usl,SV*
= UsV*VSv*
= UP
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Example Using SVD

Give Sage our A and ask to find the SVD
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Example Using SVD

Give Sage our A and ask to find the SVD
SVD

3 8 2
A= |2 5 7
1 4 6

Components

0.5778 0.8142 0.0575]
Us = |0.6337 0.4031 0.6602
0.5144 0.4179 0.7489

135886 0 0
S=| 0 48132 0
0 0  0.4281]

0.7248 0.5871 0.3605
0.6386 0.7689 0.0316

[0.2587 0.2531 0.9322]
V =
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Example Using SVD

U= UsVv*
0.5778 0.8142 0.0575] [—0.2587 —0.7248 —0.6386
—10.6337 0.4031 0.6602| | 0.2531  0.5871  —0.7689
0.5144 0.4179 0.7489| |—0.9322  0.3605  —0.0316

0.6774 —0.0154 0.7355
—0.6708 0.3974 0.6262

{ 0.3019 0.9175 70.2588:|
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Example Using SVD

U= UsV*

0.5778 0.8142 0.0575| [—0.2587 —0.7248 —0.6386
—{0.6337 0.4031 0.6602| | 0.2531 0.5871  —0.7689
0.5144 0.4179 0.7489| |—0.9322  0.3605  —0.0316
0.3019 0.9175  —0.2588
=| 0.6774  —0.0154  0.7355

—0.6708  0.3974 0.6262

v

P = VsSv*
0.2587  0.2531  0.9322 13.5886 0 0 —0.2587 —0.7248 —0.6386
=10.7248 0.5871  0.3605 0 4.8132 0 0.2531 0.5871 —0.7689
0.6386 0.7689  0.0316 0 0 0.4281 —0.9322 0.3605 —0.0316

3.1191 8.8526 4.1114
1.3206 4.1114  8.3876

{1.5897 3.1191 1.3206:|

N,
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Geometry Concepts

A= UP

Complex Numbers

z = re'
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Motivating Example

A [1:300 —.375
~ |.750 650
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Motivating Example

2%2

A [1:300 —375
~ 750 650

Polar Decomposition

U— [0.866 —0.500} a [cos30 —sin30}

| A

0.500 0.866 sin30  cos30
150 00] ,—
P= [0.0 0.75} =YA

\
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cosf sin6
= [—sin& cos@}

=4y
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cosf sin6
i = [—sin& cosG}

=V

r Vector

¥l =v/r*r

| \
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L Jeo}

cosf sin6
i = [—sinO cosG}

=V

¥l =v/r*r

P =VA*A
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Continuum Mechanics
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Iterative Methods for U

Newton lteration
U1 = 2(Uk+ U "), Up=A
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Iterative Methods for U

Newton Iteration

U1 = 2(Uk+ U "), Up=A

v
Frobenius Norm Accelerator

1 2
_ Y2
- 1

Il UkllZ

Spectral Norm Accelerator

13
_ U

[l Ukl

(7N




Applications
oce



Applications
oce

Rotation Matrices

U = RngRN v*
cos 1) cos K cossin K —sin
= |sinfsinyY cosk —cosBOsink sinfsinysink + cosfcosk sinfcosp | V*
cosfsinty cosk +sinfsink  cosfsinysink —sinfcosk  cos 6 cos
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Applications

r= /1y

[Ir[] =v/r*r




Applications
P and r

r= /1y

vl =v/rr
P =VA*A
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B5 o —.7071
—.1464 .8536 .5
.8536 —.1768 85
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Ideal Example

.5 .5 —.7071
—.1464 .8536 .5

.8536 —.1768 85




Applications

Ideal Example

B5 o —.7071 .5 .25 2855
—.1464 .8536 .5 —.1464 4268 .1665

.8536 —.1768 85 .8536 —.0884 .1665
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Iterative Methods for U

Newton Iteration

U1 = 2(Uk+ U "), Up=A

v
Frobenius Norm Accelerator
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Spectral Norm Accelerator
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