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What is it?

Definition (Right Polar Decomposition)

The right polar decomposition of a matrix A ∈ Cm×n m ≥ n has
the form A = UP where U ∈ Cm×n is a matrix with orthonormal
columns and P ∈ Cn×n is positive semi-definite.

Definition (Left Polar Decomposition)

The left polar decomposition of a matrix A ∈ Cn×m m ≥ n has the
form A = HU where H ∈ Cn×n is positive semi-definite and
U ∈ Cn×m has orthonormal columns.
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Square Root of a Matrix

Theorem (The Square Root of a Matrix)

If A is a normal matrix then there exists a positive semi-definite
matrix P such that A = P2.

Proof.

Suppose you have a normal matrix A of size n. Then A is
orthonormally diagonalizable. This means that there is a unitary
matrix S and a diagonal matrix B whose diagonal entries are the
eigenvalues of A so that A = SBS∗ where S∗S = In. Since A is
normal the diagonal entries of B are all positive, making B positive
semi-definite as well. Because B is diagonal with real, non-negative
entries we can easily define a matrix C so that the diagonal entries
of C are the square roots of the eigenvalues of A. This gives us the
matrix equality C 2 = B. Define P with the equality P = SCS∗.
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The Theorem

Definition (P)

The matrix P is defined as
√

A∗A where A ∈ Cm×n.

Theorem (Right Polar Decomposition)

For any matrix A ∈ Cm×n, where m ≥ n, there is a matrix
U ∈ Cm×n with orthonormal columns and a positive semi-definite
matrix P ∈ Cn×n so that A = UP.
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The Theorem

Definition (P)

The matrix P is defined as
√
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Example

A

A =

3 8 2
2 5 7
1 4 6

 A∗A =

14 38 26
38 105 75
25 76 89



S , S−1, and C

S =

 1 1 1
−0.3868 2.3196 2.8017
0.0339 −3.0376 2.4687


S−1 =

0.8690 −0.3361 0.0294
0.0641 0.1486 −0.1946
0.0669 0.1875 0.1652


C =

0.4281 0 0
0 4.8132 0
0 0 13.5886


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Example

P

P =
√

A∗A = S∗CS−1 =

1.5897 3.1191 1.3206
3.1191 8.8526 4.1114
1.3206 4.1114 8.3876



U

U =

 0.3019 0.9175 −0.2588
0.6774 −0.0154 0.7355
−0.6708 0.3974 0.6262


A

UP =

1.5897 3.1191 1.3206
3.1191 8.8526 4.1114
1.3206 4.1114 8.3876

 0.3019 0.9175 −0.2588
0.6774 −0.0154 0.7355
−0.6708 0.3974 0.6262
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Polar Decomposition from SVD

Theorem (SVD to Polar Decomposition)

For any matrix A ∈ Cm×n, where m ≥ n, there is a matrix
U ∈ Cm×n with orthonormal columns and a positive semi-definite
matrix P ∈ Cn×n so that A = UP.

Proof.

A = USSV ∗

= US InSV ∗

= USV ∗VSV ∗

= UP
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Example Using SVD

Give Sage our A and ask to find the SVD

SVD

A =

3 8 2
2 5 7
1 4 6



Components

US =

0.5778 0.8142 0.0575
0.6337 0.4031 0.6602
0.5144 0.4179 0.7489


S =

13.5886 0 0
0 4.8132 0
0 0 0.4281


V =

0.2587 0.2531 0.9322
0.7248 0.5871 0.3605
0.6386 0.7689 0.0316


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Geometry Concepts

Matrices

A = UP

Complex Numbers

z = re iθ
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Motivating Example

2×2

A =

[
1.300 −.375
.750 .650

]

Polar Decomposition

U =

[
0.866 −0.500
0.500 0.866

]
=

[
cos 30 − sin 30
sin 30 cos 30

]
P =

[
1.50 0.0
0.0 0.75

]
=
√

A∗A
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P and r

2×2

R =

[
cos θ sin θ
− sin θ cos θ

]
r

r =
√

x2 + y2

r Vector

‖r‖ =
√
r∗r

P

P =
√

A∗A
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iitit

Continuum Mechanics

ititit

Computer Graphics
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Iterative Methods for U

Newton Iteration

Uk+1 = 1
2(Uk + U−tk ), U0 = A

Frobenius Norm Accelerator

γFk
=
‖U−1

k ‖
1
2
F

‖Uk‖
1
2
F

Spectral Norm Accelerator

γSk =
‖U−1

k ‖
1
2
S

‖Uk‖
1
2
S
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3× 3 about x-axis

Rθ =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ



y and z Rotations

Rψ =

cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ

 Rκ =

 cosκ sinκ 0
− sinκ cosκ 0

0 0 1


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Rotation Matrices

What’s Up with U?

U = RθRψRκV
∗

=

 cosψ cosκ cosψ sinκ − sinψ
sin θ sinψ cosκ− cos θ sinκ sin θ sinψ sinκ+ cos θ cosκ sin θ cosψ
cos θ sinψ cosκ+ sin θ sinκ cos θ sinψ sinκ− sin θ cosκ cos θ cosψ

V∗
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Ideal Example

U .5 .5 −.7071
−.1464 .8536 .5
.8536 −.1768 .5



P1 0 0
0 .5 0
0 0 .33


A = UP .5 .25 −.2355
−.1464 .4268 .1665
.8536 −.0884 .1665


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Applications

Use

Continuum Mechanics

Another Use

Computer Graphics
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