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What is a Toeplitz Matrix

A Toeplitz Matrix or Diagonal Constant Matrix is a nxn
matrix where each of the descending diagonals are
constant, where

Tn =


t0 t−1 · · · t−n+1

t1 t0
. . . t−2

...
. . . . . .

...
tn−1 tn−2 · · · t0


eigenvectors of Toeplitz matrices are sines and cosines

Toeplitz matrices are also related to Fast Fourier
Tranforms (FFT) and when looking at images and signals
processing, Fourier Transforms, Hilbert Spaces, and
problems involving trigometric moments.
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What is a Toeplitz Matrix

Definition 1.1

Let A be an n x n matrix such that A is persymmetric if it is
symmetric about its anti-diagonal

Definition 1.2

Let A be a n x n matrix such that Ais centrosymmetric if it is
symmetric about the center

Definition 1.3

Let A be a n x n matrix. A is bisymmetric if only if A is
centrosymmetric and either symmetric or antisymmetric
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Conditioning of a Matrix

What is conditioning? Why does it matter?

The Conditioning Number of a Matrix

κ(A) =
∥∥A∥∥ ∥∥A−1∥∥ ≥ 1 (1)

if κ(A) is large than the matrix A is ill-conditioned

if κ(A) is small than the matrix A is well-conditioned
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Matrix Norms How do we calculate a Matrix Norm? There are
three commonly used norms

1-Norm

Let A be an m x n matrix. The 1-norm,
∥∥A∥∥

1
is equal to the

maximum column sum or for 1 ≤ j ≤ n and aj is the jth
column of A ∥∥A∥∥

1
= maxj

n∑
k=1

akj (2)
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Matrix Norms

2-Norm

Let A be an m x n matrix. The 1-norm,
∥∥A∥∥

2
is equal to the

largest singular value of A∥∥A∥∥
2

= maxiδ (3)
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Matrix Norms

∞-Norm

Let A be an m x n matrix. The 1-norm,
∥∥A∥∥∞ is equal to the

maximum row sum or for 1 ≤ i ≤ m and ai is the ith row of A

∥∥A∥∥∞ = maxi

m∑
k=1

aik (4)
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Block Gaussian Elimination

Why would we choose block Gaussian elimination compared to
other algorithms? What is block Gaussian elimination?
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Block Gaussian Elimination

Suppose we have the system Tx = b where T is Toeplitz,
symmetric and nonsingular. Then partition T

Tx =

[
A B
C D

] [
x̂
x̆

]
=

[
b̂

b̆

]
= b (5)

where x and b are nx1, A is (kxk), B is kx(n − k), C is
(n − k)xk , D is (n − k)x(n − k), x̂ and b̂ are kx1 and x̆ and b̆
are (n − k)x1.
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Block Gaussian Elimination

we then use block Gaussian elimination to break our new
partition matrix into an upper and lower triangular matrices[

A B
C D

]
=

[
I 0

CA−1 I

] [
A B
0 ∆

]
(6)

Where ∆ = D − CA−1B , and[
A B
0 ∆

] [
x̂
x̆

]
=

[
I 0

−CA−1 I

] [
b̂

b̆

]
=

[
x̂

x̆ − CA−1x̂

]
(7)

Andrew Doss — Solving Toeplitz Systems of Equations and the Importance of Conditioning 15/33



Toeplitz Matrices Conditioning Matrix Norms Block Gaussian Elimination Large Example Conclusion

Block Gaussian Elimination

We then solve for x̂ and x̆ by

1. Solving AX = C for X , where X is (n − k)xk matrix

2. Forming ∆ = D − XB

3. Forming c̆ = b̆ − Xb̂

4. Solving ∆x̆ = c̆ for x̆

5. Forming ĉ = b̂ − Bx̂ and

6. Solving Ax̂ = ĉ for x̂ .

Though this method is pretty stable there can be problems
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Block Gaussian Elimination

The biggest problem with block Gaussian elimination is that
even if T is well-conditioned, A can be ill-conditioned. There
is only one class of matrices that proves that to be true-
symmetric, positive-definite matrices, or Hermitian in the
complex case.
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Block Gaussian Elimination

let us take the 2-norm of both T and A

κ2(T ) =
σmax(T )

σmin(T )
(8)

κ2(A) =
σmax(A)

σmin(A)
(9)

where σmax is the largest singular value and σmin is the
smallest. Since T and A are symmetric positive definite,
σmax(T ) = λmax(T ), σmin(T ) = λmin(T ), σmax(A) = λmax(A),
σmin(A) = λmin(A), where λmax is the largest eigenvalue and
λmin is the smallest
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Block Gaussian Elimation

Cauchy Interlace Theorem

Let A be a symmetric nxn matrix. Let B an mxm matrix
where m ≤ n. Let B also be the compression of A. If the
eigenvalues of A are α1 ≤ · · · ≤ αn, and those of B are
β1 ≤ · · · ≤ βj ≤ · · · ≤ βm then for all j < m + 1
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Block Gaussian Elimination

From the Cauchy Interlace Theorem we know,

0 < λmin(T ) ≤ λmin(A) ≤ λmax(A) ≤ λmax(T ) (10)

Thus,

κ2(A) =
λmax(A)

λmin(A)
≤ λmax(T )

λmin(T )
= κ2(T ) (11)

Therefore if T is well-conditioned then A is also
well-conditioned.
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Large Example Time
More fun than Disneyland

Consider the matrix

T =


1 2 0 −1 5 8
2 1 2 0 −1 5
0 2 1 2 0 −1
−1 0 2 1 2 0
5 −1 0 2 1 2
8 5 −1 0 2 1

 (12)

where T is symmetric, nonsingular and positive-definite.
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Large Example Time

Before partitioning the matrix, check the conditioning∥∥T∥∥
1

= 15 (13)∥∥T∥∥
2
≈ 12.822 (14)∥∥T∥∥∞ = 15 (15)∥∥T−1∥∥
1
≈ .284 (16)∥∥T−1∥∥

2
≈ .784 (17)∥∥T−1∥∥∞ ≈ .284 (18)
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Large Example

Knowing all three matrix norms, we compute the conditioning
numbers

κ(T )1 =
∥∥T∥∥

1

∥∥T−1∥∥
1

= (15)(.284) = 4.26 (19)

κ(T )2 =
∥∥T∥∥

2

∥∥T−1∥∥
2

= (12.822)(.784) = 10.05 (20)

κ(T )∞ =
∥∥T∥∥∞ ∥∥T−1∥∥∞ = (15)(.284) = 4.26 (21)

Since κ(T ) is relatively small then T is well-conditioned.
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Large Example

Paritition T

A =

1 2 0
2 1 2
0 2 1

 B =

−1 5 8
0 −1 5
2 0 −1


C =

−1 0 2
5 −1 0
8 5 −1

 D =

1 2 0
2 1 2
0 2 1


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Large Example

x̂ =

x1x2
x3

 x̆ =

x4x5
x6


b̂ =

 1
1
−1

 b̆ =

 0
−3
1


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Large Example

now we calculate CA−1 and ∆

CA−1 =

−11
7

2
7

10
7

13
7

11
7
−22

7
38
7

9
7
−25

7

 (22)

∆ = D − CA−1B =

−24
7

71
7

88
7

71
7

−47
7
−167

7
88
7
−167

7
−367

7

 (23)
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Large Example

Now we solve for x

c̆ = b̆ − CA−1b̂ =

 19
7

−67
7

−65
7

 (24)

x̆ = ∆−1c̆ =

−9418
7807

− 21
7807

− 866
7807

 ≈
 −1.2063532727
−0.00268989368515
−0.110926091969

 (25)
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Large Example

Since we have x̆ , we can finally solve for x̂

x̂ = A−1(b̂ − Bx̆) =

− 22
7807

2722
7807
4719
7807

 ≈
−0.00281798386064

0.348661457666
0.604457538107


(26)
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Large Example

x =

[
x̂
x̆

]
=


−0.00281798386064

0.348661457666
0.604457538107

1.2063532727
−0.00268989368515
−0.110926091969

 (27)
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Final Thoughts

Block Gaussian Elimination uses O(n2) flops while
preserving Toeplitz structure

the block matrix A must be proven to be well-conditioned
or else it can ruin your solution(s)
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