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Sharing data across channels, such as satellite, television, or compact disc, often comes at
the risk of error due to noise. A well-known example is the task of relaying images of planets
from space; given the incredible distance that this data must travel, it is be to expected that
interference will occur. Since about 1948, coding theory has been utilized to help detect
and correct corrupted messages such as these, by introducing redundancy into an encoded
message, which provides a means by which to detect errors. Although non-linear codes exist,
the focus here will be on algebraic coding, which is efficient and often used in practice.

1 Basic Definitions

The following build up a basic vocabulary of coding theory.

Definition 1.1 If A = a1, a2, . . . , aq, then A is a code alphabet of size q and an ∈ A is
a code symbol. For our purposes, A will be a finite field Fq.

Definition 1.2 A q-ary word w of length n is a vector that has each of its components
in the code alphabet.

Definition 1.3 A q-ary block code is a set C over an alphabet A, where each element,
or codeword, is a q-ary word of length n. Note that |C| is the size of C. A code of length
n and size M is called an (n,M)-code.

Example 1.1 [3, p.6]
C = {00, 01, 10, 11} is a binary (2,4)-code taken over the code alphabet F2 = {0, 1} .

Definition 1.4 For two codewords, w1,w2, of length n over an alphabet A, the Ham-
ming distance, denoted d(w1,w2), is the number of places where the two vectors differ.

Example 1.2 If A = {0, 1}, and we have two codewords w1 = 101010,w2 = 100100,
then their Hamming distance is simply d(w1,w2) = 3.

Definition 1.5 For a code C, the minimum distance is denoted d(C) = min{d(w1w2) :
w1,w2 ∈ C,w1 6= w2}.

Definition 1.6 For a codeword w, the Hamming weight of w, or wt(w), is the number
of nonzero places in w. That is, wt(w) = d(w,0).

Notational note A code of length n, size M , and minimum distance d, where n,M, d
are parameters, is called an (n,M, d)-code. The main coding theory problem refers to
the need of optimizing one of these parameters when the others are given. When n is smaller,
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faster transmission can occur. When n is fixed, M is a measure of the efficiency of the code,
and d indicates its error-correcting potential. A code can correct more errors when d is larger.

Errors are detected when a vector received is not a codeword. If a codeword x is sent
and y is received instead, then the error that occurred can be expressed as e = x + y. Thus,
in order to detect a certain error pattern e, x + e cannot be a codeword.

Example 1.3 [2, p.20]
Suppose we have the binary (3,3)-code C = {001, 101, 110}. Then the error pattern e1 = 010
can be detected because for all x ∈ C, x + e1 6∈ C: 001 + 010 = 011, 101 + 010 =
111, 110 + 010 = 100. However, when e2 = 100, 001 + 100 = 101 ∈ C, which is enough
to say that C does not detect e2.

Definition 1.7 A code is u-error-detecting if when a codeword incurs between one to
u errors, the resulting word is not a codeword.

Theorem 1.1 A code is u-error-detecting if and only if d(C) ≥ u+ 1.

Proof: [5, p.17], [6, p.5]
(⇒) Suppose d(C) ≥ u + 1. Then any error pattern of weight at most u will alter a

codeword into a non-codeword, which can be detected.

(⇐) Now suppose that a code is u-error-detecting. Then for any error pattern e with
wt(e) ≤ u and codeword x, x+e is not a codeword. Now suppose that for x, y ∈ C, d(x,y) ≤
u. Let e = x + y. Then wt(e) ≤ u and x + e = x + x + y = y, which is a codeword. There-
fore, e cannot be detected. This is a contradiction, which can be fixed by conditioning
d(x,y) ≥ u+ 1. �

An error pattern e can be corrected if there is a codeword x where e + x is closer to x
than any other codeword. This comparison can be done with minimum distance.

Definition 1.8 A code is v-error-correcting if v or fewer errors can be corrected by
decoding a transmitted word based on minimum distance.

Example 1.4 [3, p.13]
If we have the simple binary (3, 2)-code C = {000, 111}, then C is single-error-correcting. If
000 is sent and either 100, 010, or 001 is received, then changing one digit would accurately
decode the word to 000. However, if 000 is sent and 110 is received, the code would inaccu-
rately be decoded to 111, based on the evaluation of minimum distances between the received
vector and the codewords of C. Thus, this code cannot correct two or more erroneous digits.

Theorem 1.2 A code is v-error-correcting if and only if d(C) ≥ 2v + 1. That is, if C
has a distance d, it corrects d−1

2
errors.

Proof: [3, p.13]
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(⇐) Suppose d(C) ≥ 2v+1. If x is sent, but y is received and v or less errors occur, then
d(x,y) ≤ v. To prove that the code is v-error-correcting, observe that for another codeword
x′ ∈ C,

d(y,x′) ≥ d(x,x′)− d(y,x)

≥ 2v + 1− v
= v + 1

> d(y,x).

Since the distance between the sent codeword x and the received word y is less than the
distance between y and any other codeword in C, y will be accurately corrected to x. Recall
that for this case, v or less errors occurred, which means C is v-error-correcting.

(⇒) Now suppose that C is v-error-correcting. If now instead d(C) < 2v + 1, then there
exist codewords x,x′ such that d(x,x′) = d(C) ≤ 2v. Consider the case when x is sent and
v or less errors occur.
Since this code is v-error-correcting, d(x,x′) ≥ v + 1. If x and x′ differ in d = d(C) po-
sitions, note that v + 1 ≤ d ≤ 2v. For a received word y of length n where v digits of
y match with x′, d − v digits match with x, and n − d match with both x and x′, then
d(y,x′) = d− v ≤ v = d(y,x).

So either x′ is incorrectly chosen as the word closest to y, or the two distances are equal.
In either case, this implies that the minimum distance must be redefined. Since it was stated
to be d(C) < 2v + 1, the only option now is d(C) ≥ 2v + 1. �

Definition 1.9 A binary number system, or binary representation of numbers, is
often used in due to the popularity of base 2 in computing. For instance, the number abcde,
where a, b, c, d, e ∈ {0, 1}, would represent a× 24 + b× 23 + c× 22 + d× 21 + e× 20.

Example 1.5 [6, p.39] The binary representation of 10101 is:

10101 = 1× 24 + 0× 23 + 1× 22 + 0× 21 + 1× 20

= 16 + 4 + 1

= 21

2 Finite Fields

Although the examples of the previous section were done over the binary field, knowledge of
larger finite fields is useful for several important functions of error-correcting codes. Being
able to correct more than one error is desirable, which is commonly done by taking powers
in a finite field. Since taking powers in a binary field is trivial (1n = 1, 0n = 0), a larger
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finite field would prove more fruitful. Being able to correct error bursts, which is when er-
rors occur consecutively, and finding new codes also are both easier with finite fields [5, p.95].

Definition 2.1 A field is a nonempty set F of elements equipped with the operations ad-
dition and multiplication. A field must satisfy eight axioms under the following categories:
closure under addition and multiplication, commutativity of addition and multiplication,
associativity of addition and multiplication, distributivity of multiplication over addition,
additive and multiplicative identities, and additive and multiplicative inverses.

In order to begin discussing finite fields, modular arithmetic must be introduced.

Definition 2.2 Let a, b, and m > 1 be integers. Then a is congruent to b modulo m,
or a ≡ b (mod m), if m|(a− b). This means that the remainder of m

a
is b, or (a− b) can be

divided by m. As a result, a = mq + b. In addition, b is known as the principal remainder
and can be denoted as a (mod m).

Modular addition and multiplication is defined as follows.

If a ≡ b (mod m) and c ≡ d (mod m), then

a+ c ≡ b+ d (mod m)

a · c ≡ b · d (mod m).

Note that the set of integers 0, 1, . . . ,m− 1, denoted Zm, Z/m, or GF (m), forms a
commutative ring when using the following definitions of addition and multiplication in Zm:

Addition of e and f : (e+ f (mod m))
Multiplication of e and f : (ef (mod m).

The only axiom Zm does not satisfy in order to be classified as a field is the existence of a
multiplicative inverse.

Example 2.1 The following tables define binary arithmetic (+) and multiplication (·).

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Example 2.2 For Z4, 3+2 = 3. Using the definitions of modular arithmetic, 3 (mod 4) =
1 and 2 (mod 4) = 2, so (2 + 1) (mod 4) = 1. Using the definition of addition in Z4,
1 (mod 4) = 3.

The following are some more advanced definitions and theorems that are useful for rele-
vant work in finite fields.
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Theorem 2.1 Zp is a field if and only if p is a prime.

Definition 2.3 Denote the multiplicative identity of a field F as 1. Then characteristic
of F is the least positive integer p such that 1 added to itself p times is equal to 0. We can
prove that this characteristic must be either 0 or a prime number.

Theorem 2.2 A finite field F of characteristic p contains pn elements for some integer
n ≥ 1.

There are many analogues between an integral ring and a polynomial ring. The following
definitions are very similar to those just described.

Definition 2.4 A polynomial f(x) of positive degree is said to be reducible over a field
F if there exist two polynomials g(x) and h(x) such that the degree of g(x) is less than that
of f(x), the degree of h(x) is also less than that of f(x), and f(x) = g(x)h(x). Irreducible
polynomials are the polynomial version of prime numbers.

Definition 2.5 If the coefficients of a polynomial are in a field F , let f(x) ∈ F [x]
be a polynomial of degree n ≥ 1. Then for any polynomial g(x) ∈ F [x], there exists a
unique pair s(x), r(x) of polynomials, where the degree of r(x) is less than that of f(x), and
g(x) = s(x)f(x) + r(x). Very similarly to the integer case, r(x) is known as the principal
remainder of g(x) divided by f(x), and can be denoted as g(x) (modf(x)).

Definition 2.6 For two nonzero polynomials f(x), g(x) ∈ F [x], the greatest common
divisor, gcd(f(x), g(x)), is the monic polynomial (polynomial with the leading coefficient
equal to 1) of the highest degree that divides into both f(x) and g(x).

Euclid’s algorithm is a method used to find such highest common factors as mentioned
above, and applies to both integers and polynomials. This provides an efficient way of deal-
ing with errors in codes such as BCH and Reed-Solomon.

Definition 2.7 For n polynomials in Fq[x], denoted f(x1), f2(x), . . . , fn(x), the least
common multiple, denoted lcm(f(x1), f2(x), . . . , fn(x)) is the lowest degree monic poly-
nomial that is a multiple of all the polynomials.

Definition 2.8 A minimal polynomial of an element in a finite field Fp is a nonzero
monic polynomial of the least degree possible such that the element is a root.

Definition 2.9 A primitive element or generator of Fp is an α such that Fq =
{0, α, α2, . . . , αp−1} Every finite field has at least one primitive element, and primitive ele-
ments are not unique.
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3 Linear Codes

A code C is a linear code if every codeword can be expressed as a linear combination of
codewords. A linear code of length n over a finite field Fq is a subspace of the vector space
Fn

q , where n denotes the length of each vector. Thus, C satisfies the 10 properties that define
a vector space.

Definition 3.1 If C is a linear code in Fn
q , then the dual code of C is C⊥.

Definition 3.2 The matrix whose rows are the basis vectors of a linear code is a gen-
erator matrix.

Example 3.1 [4, p.6]
For the binary (5, 3) code, one example of a generator matrix G is

G =

1 0 0 1 1
0 1 0 0 1
0 0 1 1 1


Definition 3.3 A parity-check matrix for a linear code C is often used for decoding.

It is defined as a generator matrix for the dual code C⊥.

Note that if C is a (n, k)-code, then a generator matrix G must be k × n and a parity-
check matrix H must be an (n− k)× n matrix.

Definition 3.4 Two q-ary codes are equivalent if one can be obtained from the other
using a combination of the operations (i) permutation of the positions of the code and (ii)
multiplication of the symbols appearing in a fixed position. When applied to a generator
matrix, (i) is a column swap, and (ii) is a row operation.

Consider the following example for an alternative way of conceptualizing the parity-check
matrix.

Example 3.2 [4, p.7]
If the generator matrix of a code C is given by G of Example 3.1, then it is clear that the
last two columns of G can be expressed as linear combinations of the first three columns of
G. If the columns are denoted v1, v2, . . . , v5, then v1 + v3 = v4, and v1 + v2 + v3 = v5. These
equations are known as parity-check equations. The corresponding parity-check matrix is
formed as

H =

(
1 0 1 1 0
1 1 1 0 1

)
Thus, the parity-check matrix can be viewed as a coefficient matrix for the parity-check

equations. In this example, the generator matrix for the (n,M)-code had n linearly inde-
pendent columns, and the remaining columns M − n columns of the generator matrix were
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expressed as linear combinations of those independent columns.

Notational note For an (n, k)-code, the standard form of a generator matrix G is (Ik|A)
and the standard form of a parity-check matrix H is (B|In−k). The standard form of G can
be achieved by row operations. Once G is in reduced-row-echelon form, the columns can be
rearranged so that an identity matrix is on the left.

For an (n, k, d)-code C over Fq, there are qk distinct codewords, each of which can be
expressed as a linear combination of the basis vectors of C (or of the rows of the generator
matrix). In order to transform a vector u ∈ Fk

q into a codeword of C, you treat u as a 1× k
matrix and multiply it on the right by G. So to acquire a codeword v based off of u, v = uG.

Example 3.3 [3, p.58]
Suppose C is the binary (5, 3)-code with

G =

1 0 1 1 0
0 1 0 1 1
0 0 1 0 1


and a vector u = 101 is to be encoded. Then the codeword v can simply be determined
through matrix multiplication as follows.

v = (101)

1 0 1 1 0
0 1 0 1 1
0 0 1 0 1

 = (10011).

When G is in standard form, the vector v will be n+ k digits long, and the first k digits
will be the vector that was initially encoded. This is because any matrix multiplied by the
identity matrix remains unchanged. The first k digits are known as the message digits and
the last n− k digits are known as check digits. Check digits represent redundancy, which
greatly helps protect against noise.

Theorem 3.1 If C is a (n, k)-code over Fp, then v is a codeword of C if and only if it is
orthogonal to every row of the parity-check matrix H, or equivalently, vHT = 0. This also
means that G is a generator matrix for C if and only if the rows of G are linearly independent
and GHT = O.

The above theorem is a direct consequence of the definitions of the generator and parity-
check matrices. For any v ∈ C, then v · c = 0 for all c ∈ C, which is the definition of
orthogonality. Since the rows of G are in C and the rows of H are in C⊥, all rows of G and
H must be orthogonal to each other [3, p.53].

Theorem 3.2 If G = (Ik|A) is the standard form of the generator matrix for an (n, k)-
code C, then a parity-check matrix for C is H = (−AT |In−k).

Overview of Proof: [1, p.71]
H is therefore of size (n − k) × n, and its rows are linearly independent. Due to the
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placement of the identity matrices in each standard form, the inner product of any row of
H with any row of G sums to 0. Note that if the code is binary, then A does not need to be
negated. �

Theorem 3.3 For a linear code C and a parity-check matrix H, C has distance ≥ d if
and only if any d− 1 columns of H are linearly independent, and C has distance ≤ d if and
only if H has d columns that are linear dependent. In other words, when C has distance
d, any d − 1 columns of H are linearly independent and H has d columns that are linearly
dependent [3, p.54].

Recall the main coding theory problem from Section 1. Determining how many
words a linear code of length n and distance d can have involves finding different bounds on
the size M of the code, given n and d.

Here is one cursory overview of such a bound. Imagine fitting disjoint spheres, each of
a fixed radius, in a space An, where A is an alphabet of size q with codewords of length
n. This is known as the sphere-packing problem, and the following provides one well-known
upper bound as a consequence.

Definition 3.5 A q-ary code is a perfect code if it attains the Hamming, or sphere-
packing bound. For q > 1 and 1 ≤ d ≤ n, this is defined as having

qn∑[(d−1)/2]
i=0

(
n
i

)
(q − 1)i

codewords.

Theorem 3.4 When q is a prime power, the paramters (n, k, d) of a linear code over Fq

satisfy k + d ≤ n+ 1. This upper bound is known as the Singleton bound

Definition 3.6 A (n, k, d) code where k+d = n+1 is a maximum distance separable
code (MDS) code.

Theorem 3.5 If a linear code C over Fq with parameters (n, k, d) is MDS, then C⊥ is
MDS, every set of n − k columns of the parity-check matrix are linearly independent, and
every set of k columns of the generator matrix is linearly independent.

4 Hamming codes

Our first example of a class of linear codes will be Hamming codes, which are single error-
correcting and double error-detecting codes that are easy to encode and decode.

Definition 4.1 A binary code of length 2r − 1, r ≥ 2, with a parity-check matrix H
whose columns consist of all nonzero binary codewords of length r, is known as a binary
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Hamming code of length 2r− 1, and is denoted Ham(r, 2). Note that the columns may be
in any order, which means that all binary Hamming codes of a given length n are equivalent
(see Definition 3.4). For the finite field Fq, the q-ary Hamming code of length qr−1

q−1 − r is

denoted as Ham(r, q).

Hamming codes are perfect codes. For those of the form Ham(r, 2), with dimension/size
k and distance d, some properties are: k = 2r − 1− r and d = 3 (which, by Theorem 1.1,
means they are exactly single-error-correcting). For the Ham(r, q) case, k = qr−1

q−1 .

In order to decode with a binary Hamming code, an incoming vector v’s syndrome must
be calculated. This is simply S(v) = vHT , when v is treated as a row vector. If v is treated
as a column vector, then S(v) = Hv. If S(v) = 0, then it can be assumed that v was a
legitimate codeword. Otherwise, for some j such that 1 ≤ j ≤ 2r − 1, S(v) is the binary
representation of j (see Definition 1.9). If there was a single error, this means that ej was
the error, and the actual word sent was v − ej.

Example 4.1 For Ham(3, 2), the parity-check matrix H1 can be defined as follows:

H1 =

1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1


A common decoding algorithm for binary Hamming codes is as follows, using our example

of the Ham(3, 2) code. Recall Definition 1.9. Since all binary Hamming codes of a given
length are equivalent, arrange the columns of H1 in order of increasing binary numbers. In
our case, this means that the first column (001) is the binary representation of 1 and the
last column (111) is a binary representation of the number 7.

H2 =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


Suppose that the vector (or 1× 7 matrix) y = (1101011) is received. Then

yHT
2 = (1101011)

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 = (110)

Since S(y) 6= 0, we note that (110) is the binary representation of the number 6, which
means that the single error that occurred happened in the sixth position of y. Thus, y is
corrected to (1101001), and the original message that was encoded is 1101 [1, p.84].

As a check and review, let us form the generator matrix, G2, of H2 and encode x = 1101
with it. To derive G2, arrange the columns of H2 into standard form and then use Theorem
3.2. Then observe that

xG2 = (1101)


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 = (1101001)
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Thus, x is encoded to (1101001), matching the first part of this example.

5 BCH Codes

For a Hamming code to be able to correct two errors, its minimum distance would have to
be increased from 3 to 5, which means either lengthening the codewords or eliminating some
of them. BCH codes are a subcode of the Hamming codes where certain codewords in the
Hamming code are eliminated [5, Ch. 13]. However, BCH codes are cyclic codes, which
means that they can be determined from a generator polynomial.

Definition 5.1 Suppose α is a primitive element of a finite field Fm
q and M i(x) is the

minimal polynomial of αi with respect to Fq. Then a primitive BCH code over Fq of
length n = qm − 1 and distance d is a q-ary cyclic code that is generated by the polynomial
defined as lcm(Ma(x),Ma+1(x), . . . ,Ma+d−2(x)) for some a.

One way to represent a codeword c is with a binary polynomial c(x), where α is a
primitive element and c(αk) = 0. Given a codeword c of length n, let the digits of c be
denoted c = cn−1, . . . , c1, c0, and define the polynomial c(x) as

c(x) =
n−1∑
i=0

cix
i.

Example 5.1 [5, Ch. 14] Utilizing the above formula, the BCH code of length 15,

00001 11011 00101,

corresponds to the polynomial x10 + x9 + x8 + x6 + x5 + x2 + 1.

Encoding a message space of polynomials simply involves polynomial multiplication.

Example 5.2 [5, p.219] Encoding a codeword such as w = 10111 involves representing
it as the polynomial b(x) = x4 + x2 + x1 + x0, and then multiplying it by the generator
polynomial,

g(x) = x10 + x9 + x8 + x6 + x5 + x2 + 1.

Since the coefficients of these polynomials are only 0 or 1, polynomial multiplication is the
same as multiplication of the binary representations of these polynomials. Thus,

g(x)b(x) = 11000 10011 01011.

This can be equivalently expressed as the polynomial x14 + x13 + x9 + x6 + x5 + x3 + x+ 1.
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Since a generator matrix simply has codewords as its rows, the coefficients of a generator
polynomial can be used to build the rows of such a generator matrix. Note that just as with
the previous example, this will only involve coefficients of values 0 or 1.

Decoding BCH codes involves calculating syndromes (as done with the Hamming codes),
finding the error locator polynomial, and finding its roots.

6 Reed-Solomon Codes

Moving away from relatively simplistic binary examples, Reed-Solomon codes are a popular,
important subclass of BCH codes that can handle error-bursts (as opposed to random errors
that do not happen in blocks).

Definition 6.1 A q-ary Reed-Solomon code (RS code) is a q-ary BCH code of
length q − 1 that is generated by g(x) = (x − αa+1)(x − αa+2) . . . (x − αa+d−1), where
a ≥ 0, 2 ≤ d ≤ q − 1, and α is a primitive element of Fq. Since the length of a binary RS
code would be 2− 1 = 1, this type of code is never considered.

Example 6.1 [3, p.172] For a 7-ary RS code of length 6 and generator polynomial
g(x) = (x − 3)(x − 32)(x − 33) = 6 + x + 3x2 + x3, a generator matrix G and parity-check
matrix H can be formed:

G =

6 1 3 1 0 0
0 6 1 3 1 0
0 0 6 1 3 1


H =

1 4 1 1 0 0
0 1 4 1 1 0
0 0 1 4 1 1


It can be proved that RS codes are MDS codes.

7 Conclusion

The process of encoding data, transmitting it across a channel, and decoding that data in way
that allows for discovering errors is the essence of coding theory. The reason that linear codes
are constructed is because vector spaces and finite fields provide a great deal of structure.
Without the assurance that every codeword can be expressed as a linear combination of other
codewords, tools such as the parity-check matrix would no longer serve a purpose. Hamming,
BCH, and RS codes have all been used in practice, and combine wide areas of algebra to best
solve different issues that arise in encoding and decoding. Many more codes with different
advantages (both linear and non-linear) exist, using similar tools to those already discussed.
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