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Why do we need Rational Canonical Form?

Consider the matrix over R,

A =


5 6 3 4
−1 9 2 7
4 −2 −8 10

21 −14 6 3


I This matrix has characteristic polynomial

x4 + 9x3 − 97x2 + 567x − 9226

I Can not find Jordan Canonical Form for this matrix.
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What is Rational Canonical Form?

Recall that a companion matrix for a polynomial
f (x) = xn + an−1xn−1 + ... + a0 is the matrix of the form:

0 0 ... 0 −a0
1 0 ... 0 −a1
0 1 ... 0 −a2
0 0 ... 0 −a3
. . ... . .
. . ... . .
0 0 ... 1 −an−1


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A matrix in Rational Canonical Form is a matrix of the form


C [fn]

C [fn−1]
. . .

C [f1]


Where C [fi ] is a companion matrix for the polynomial fi .
Furthermore, fn|fn−1|...|f1.
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k[x]-modules

Definition
Recall that a k[x]-module is a module with scalars from the ring
k[x] and scalar multiplication defined as follows:

Given f (x) ∈ k[x ], f (x)v =
n∑

i=0
aix

iv =
n∑

i=0
aiT

i (v) = f (T )(v).

I We can think of this as the module associated with the linear
transformation T
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Definition
Given an R-module, M, and m ∈ M, the annihilator of m ∈ M is:

ann(m) = {r ∈ R : rm = 0}.

Theorem
Given a vector space V over a field F and a linear transformation
T : V → V , the F [x ]-module, V T , is a torsion module.

Proof.
the set {v ,T (v),T 2(v), ...,T n(v)} is linearly dependent since it
contains n + 1 vectors.

g(x) =
n∑

i=0
aix

i ∈ ann(v)
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Definition
If M is an R-module, then a submodule N of M, denoted N ⊆ M
is an additive subgroup N of M closed under scalar multiplication.
That is, rn ∈ N for n ∈ N and r ∈ R.

Theorem
Given a vector space V over a field F and a linear transformation,
T : V → V , a submodule W of the F [x ]-module V T is a
T -invariant subspace. More specifically, T (W ) ⊆W .
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The Minimal Polynomial and k[x]-modules

Definition
The annihilator of a module, M, is:

ann(M) = {r ∈ R : rm = 0 for all m ∈ M}

Definition
The Minimal Polynomial of a matrix A, denoted mA(x), is the
unique monic polynomial of least degree such that mA(A) = 0.
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The Minimal Polynomial and k[x]-modules

I These two terms are related for k[x]-modules

ann(V T ) ={f (x) ∈ F [x ]|f (x)v = 0 for all v ∈ V }
={f (x) ∈ F [x ]|f (T )v = 0 for all v ∈ V }
={f (x) ∈ F [x ]|f (T ) = 0}

I We can use these terms synonymously
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Matrix Representation of Cyclic Submodules

Definition
Given an R-module, M, and an element m ∈ M, the cyclic
submodule generated by m is

〈m〉 = {rm : r ∈ R}

I Since a submodule, W , of a k[x]-module is T -invariant, we
can examine the matrix representation T |W

I Let us look at T restricted to cyclic submodules of
k[x ]-modules
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Theorem
Let W = 〈w〉 be a cyclic submodule of the F [x ]-module V T and
deg(mT |W (x)) = n. Then the set
{T n−1(w),T n−2(w), ...,T (w),w} is a basis for W .

Proof.

I By the division algorithm, we can write any polynomial
f (x) = m(x)q(x) + r(x) where m(x) is the minimal
polynomial of T |W with deg=n and deg(r(x)) < n

I so, for any w1 ∈W ,

w1 =r(x)w

=r(T )w

=an−1T n−1(w) + an−2T n−2(w) + ... + a0(w).

Glenna Toomey University of Puget Sound
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Proof cont.

I Consider the relation of linear dependence:
an−1T n−1(w) + an−2T n−2(w) + ... + a0(w) = 0

I an−1T n−1(w) + an−2T n−2(w) + ... + a0(w) = p(x)w ,
deg(p(x)) < deg(m(x))

Glenna Toomey University of Puget Sound
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I Now consider the matrix representation of T |W relative to the
basis {w ,T (w), ...,T n−1(w)}



0 0 ... 0 −a0
1 0 ... 0 −a1
0 1 ... 0 −a2
0 0 ... 0 −a3
. . ... . .
. . ... . .
0 0 ... 1 −an−1


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Primary Decomposition

Theorem
Let M be a finitely generated torsion module over a principal ideal
domain, D, and let ann(M) = 〈u〉, u = pe1

1 pe2
2 ...pen

n where each pi

is prime in D. Then

M = Mp1 ⊕Mp2 ⊕ ...⊕Mpn

where Mpi = {v ∈ V : pe
i v = 0}.
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Cyclic Decomposition

Theorem
Let M be a primary, finitely generated torsion module over a
principle ideal domain, R with ann(M) = 〈pe〉, then M is the direct
sum,

M = 〈v1〉 ⊕ 〈v2〉 ⊕ ...⊕ 〈vn〉

where ann(〈vi 〉) = pei and the terms in each cyclic decomposition
can be arranged such that

ann(v1) ⊇ ann(v2) ⊇ ... ⊇ ann(vn).

Glenna Toomey University of Puget Sound
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Therefore, we can write:
V T = Mp1 ⊕Mp2 ⊕ ... Mpn =
(〈v1,1〉 ⊕ 〈v1,2〉 ⊕ ...⊕ 〈v1,k1〉)⊕ ...⊕ (〈vn,1〉 ⊕ ...⊕ 〈vn,kn〉)

I ann(〈vi ,j〉) = p
ei,j
i

I pei
i = p

ei,1
i ≥ p

ei,2
i ≥ ... ≥ p

ei,ki
i
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The Invariant Factor Decomposition

I We can rearange these cyclic subspaces into the following
groups

W1 = 〈v1,1〉 ⊕ 〈v2,1〉 ⊕ ...⊕ 〈vn,1〉
W2 = 〈v1,2〉 ⊕ 〈v2,2〉 ⊕ ...⊕ 〈vn,2〉

...

I each Wi is cyclic with order pe1,i pe2,i ...pej,i = di

I Each di is called an invariant factor of V T

I Notice that since d1 = p
e1,1
1 p

e2,1
2 ...p

en,1
n , d2 = p

e1,2
1 p

e2,2
2 ...p

en,2
n , ...

We can conclude that dn|dn−1|...|d1
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Example

Suppose that W is a torsion module with order pe1
1 pe2

2 pe3
3

I W = Mp1 ⊕Mp2 ⊕Mp3

I Suppose that Mp1 ⊕Mp2 ⊕Mp3 =
(〈v1,1〉 ⊕ 〈v1,2〉 ⊕ 〈v1,3〉)⊕ (〈v2,1〉 ⊕ 〈v2,2〉)⊕ (〈v3,1〉)

I Then the 〈pe1
1 〉 = ann(v1,1) ⊇ ann(v1,2) ⊇ ann(v1,3), 〈pe2

2 〉 =
ann(v2,1) ⊇ ann(v2,2), pe3

3 = ann(v3,1).

I W = (〈v1,1〉 ⊕ 〈v2,1〉 ⊕ 〈v3,1〉)⊕ (〈v1,2〉 ⊕ 〈v2,2〉)⊕ (〈v1,3〉)
I d1 = p

e1,1
1 p

e2,1
2 p

e3,1
3 = pe1

1 pe2
2 pe3

3 , d2 = p
e1,2
1 p

e2,2
2 , and d3 = p

e1,3
1
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Rational Canonical Form

I Given any matrix, we can realize this matrix as the linear
transformation, T , associated with the k[x ]−module,V T

I The first invariant factor will be the minimum polynomial

I Each invariant factor will be a factor of the minimum
polynomial

Glenna Toomey University of Puget Sound

Rational Canonical Form



Introduction k[x]-modules Matrix Representation of Cyclic Submodules The Decomposition Theorem Rational Canonical Form

Rational Canonical Form

I Given any matrix, we can realize this matrix as the linear
transformation, T , associated with the k[x ]−module,V T

I The first invariant factor will be the minimum polynomial

I Each invariant factor will be a factor of the minimum
polynomial

Glenna Toomey University of Puget Sound

Rational Canonical Form



Introduction k[x]-modules Matrix Representation of Cyclic Submodules The Decomposition Theorem Rational Canonical Form

Rational Canonical Form

I Given any matrix, we can realize this matrix as the linear
transformation, T , associated with the k[x ]−module,V T

I The first invariant factor will be the minimum polynomial

I Each invariant factor will be a factor of the minimum
polynomial

Glenna Toomey University of Puget Sound

Rational Canonical Form



Introduction k[x]-modules Matrix Representation of Cyclic Submodules The Decomposition Theorem Rational Canonical Form

Example

Consider the matrix, −2 0 0
−1 −4 −1
2 4 0



I characteristic polynomial is x3 + 6x2 + 12x + 8 = (x + 2)3

I minimal polynomial is (x + 2)2 since (A + 2I )2 = 0

I invariant factors are (x + 2)2 and x + 2
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Example cont.

Therefore, the rational canonical form of this matrix is:−2 0 0
0 0 −4
0 1 −4



Glenna Toomey University of Puget Sound

Rational Canonical Form


	Introduction
	k[x]-modules
	Matrix Representation of Cyclic Submodules
	The Decomposition Theorem
	Rational Canonical Form

