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1 Introduction

A tensor is a multidimensional array, where the order of tensor denotes the dimension of
the array. For example, a scalar is simply an order-0 tensor, a vector order-1, a matrix
order-2, and any tensor with order-3 or greater is described as a higher order tensor. For
this paper I will be focusing on the simplest higher-order tensor, the order-3 tensor, which
can be visualized as a sort of Rubik’s cube.

Definition 1. A n1 × n2 × n3 third order tensor is a n3 array of n1 × n2 matrices. Third
order tensors will be denoted by uppercase script letters (A,B, C, . . . ). Aijk refers to the
number in row i and column j of matrix k of A. The set of 3rd-order tensors with real
number entries is denoted Rn1×n2×n3

In discussing higher order tensors there is some fundamental language that must first
be understood. Analogous to rows or columns of a matrix, 3rd-order tensors have fibers.
Since there are 3 dimensions to a 3rd-order tensor there are 3 types of fibers generated by
holding two of the indexes constant. These fibers are named similarly to the vector elements
of a matrix. There are row, column, and tube fibers, which are visualized in Figure 2.1
from Kolda and Bader (2009)[3]. In addition to fibers, 3rd-order tensors also have slices
generated by holding one of the indexes constant. The slices resemble matrices that, when
stacked together, form a tensor. A 3rd-order tensor can be sliced in 3 directions producing
horizontal, lateral, and frontal slices which are visualized in Figure 2.2 from Kolda and Bader
(2009)[3].

In quantum chemistry 3rd-order tensors arise naturally as the the outer product of a
matrix and a vector, which occurs when calculating spectroscopic properties [2]. In dealing
with 3rd-order tensors it is difficult to expand on standard matrix manipulations such as
rotation by multiplication with a rotational matrix. To perform these manipulations on
higher-order tensors the tensor has to be decomposed into vector or matrix components that
can be manipulated and then used to reform a new, rotated tensor. This can be accomplished
by performing a CANDECOMP/PARAFAC (CP) decomposition. This process is a nontrivial
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Figure 1: Adapted from Kolda and Bader (2009)[3]

task and commonly utilizes an alternating least squares (ALS) method [4]. While the ALS
method is relatively easy to implement as an expanded version of the standard least squares
method, it does not always converge on a solution causing computational difficulties [3]. For
this reason many more computational methods have been developed for dealing with special
cases involving 3rd-order tensors. In this paper, I lay out some of the common properties of
third order tensors, discuss Higher Order SVD and CP decompositions, and how these apply
to problems in quantum chemistry.

2 3rd-Order Tensor Decompositions

2.1 Modal Operations

To discuss the Higher Order SVD, we must first have a general understanding of two modal
operations, modal unfoldings and modal products.

Definition 2. SupposeA is a 3rd-order tensor andA ∈ Rn1×n2×n3 . Then the modal unfolding
A(k) is the matrix A(k) ∈ Rnk×N where N is the product of the two dimensions unequal to
nk.

For a 3rd-order tensor, A ∈ Rn1×n2×n3 , there are 3 modal unfoldings and in general
a d-order tensor has d modal unfoldings. As a simple example the modal unfoldings for
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A ∈ R3×4×2 are shown below, where A1 and A2 are the frontal slices of A.

A1 =

1 2 3 4
5 6 7 8
9 10 11 12

 A2 =

13 14 15 16
17 18 19 20
21 22 23 24


A(1) =

1 2 3 4 13 14 15 16
5 6 7 8 17 18 19 20
9 10 11 12 21 22 23 24



A(2) =


1 5 9 13 17 21
2 6 10 14 18 22
3 7 11 15 19 23
4 8 12 16 20 24


A(3) =

[
1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24

]
Using the definition of modal unfolding we can now define a modal product between a matrix
and a tensor.

Definition 3. The modal product, denoted ×k, of a 3rd-order tensor A ∈ Rn1×n2×n3 and a
matrix U ∈ RJ×nk , where J is any integer, is the product of modal unfolding A(k) with U.
Such that

B = UA(k) = A×k U

These two operations will be used to generalize the standard SVD definition.

2.2 Higher Order SVD (HOSVD)

Informally the Higher Order SVD is simply defined as an SVD for each of the tensors modal
unfoldings.

Definition 4. Suppose A is a 3rd-order tensor and A ∈ Rn1×n2×n3 . Then there exists a
Higher Order SVD such that

UT
kA(k) = ΣkV

T
k (1 ≤ k ≤ d)

where Uk and Vk are unitary matrices and the matrix Σk contains the singular values of
A(k) on the diagonal, [Σk]ij where i = j, and is zero elsewhere.

Using this definition, computing an HOSVD for a tensor of order-N is only as computa-
tionally difficult as performing N matrix SVD’s. In practice the SVD of a matrix is useful
in compressing a matrix to a representation that is arbitrarily close to the original. General-
izing this to the higher order tensor case can be accomplished by using the unitary matrices
Uk from the HOSVD to find a tensor S as follows: (the→ is used to denote undoing a modal
unfolding)

UT
1A(1) = Â(1) → Â

UT
2 Â(2) =

ˆ̂A(2) → ˆ̂A

UT
3

ˆ̂A(3) = S(3) → S
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This can be denoted by sequential modal products much more concisely.

S = A×1 U
T
1 ×2 U

T
2 ×3 U

T
3

A = S ×1 U1 ×2 U2 ×3 U3

This S tensor is referred to as the core tensor. While this tensor is not diagonal the entries
tend to decrease as distance from the diagonal increases where the diagonal is the entries
from the upper left hand corner of the cube to the lower right hand corner. This property
is useful when compressing the original A because the dimension of U can be reduced by
dropping the smaller terms, and a close approximation will still be generated, much like the
compression of a matrix using SVD. The biggest example of this is the compression of color
photos where each frontal slice corresponds to intensities of red, green, or blue instead of
the matrix example where entries correspond to intensities on the gray-scale. This approach
could also be used to first compress a tensor, then perform a CP decomposition on the
compressed tensor to save computational resources.

2.3 Rank of Higher Order Tensors

The notion of rank with respect to higher order tensors is not as simple as the rank of a
matrix.

Definition 5. The rank of a tensorA is the smallest number of rank 1 tensors that sum to
A.

This definition of rank comes up naturally within many of the common tensor decom-
positions. For example, in the CANDECOMP/PARAFAC (CP) decomposition the rank
specifies the minimum number of vector outer products required to reproduce the tensor
exactly. And, with a somewhat circular claim, an exact CP decomposition with minimal
vector outer products can be used to determine the rank of a tensor, this is also referred to
as a rank decomposition. While the definition for matrix rank is an analog to tensor rank,
the properties are quite different. For example, there is no general algorithm to determine
the rank of a given higher order tensor. There is only a loose upper bound on the rank of a
3rd-order tensor, A ∈ RI×J×K , described by rank(A) ≤ min{IJ, IK, JK}, but the rank is
often lower than this for randomly generated tensors [7].

2.4 CANDECOMP/PARAFAC Decomposition

Unfortunately there is no single algorithm to perform a CP decomposition on any tensor.
This is partially due to the fact that the rank of a higher order tensor is not known pre-
cisely until a CP decomposition has been performed and is known to be the most concise
decomposition.

Definition 6. A CP decomposition of a 3rd-order tensor, A, is defined as a sum of vector
outer products, denoted ◦, that equal or approximately equal A. For R = rank(A)

A =
R∑

r=1

ar ◦ br ◦ cr
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and for R < rank(A)

A ≈
R∑

r=1

ar ◦ br ◦ cr

The CP decomposition is nicely visualized by Kolda and Bader (2009) in Figure 3.1.

Figure 2: Adapted from Kolda and Bader (2009)[3]

The vectors of a CP composition, ar, br, and cr for 1 ≤ r ≤ R, are often compiled into
the columns of the matrices A, B, and C respectively, and the CP decomposition is written
more concisely,

A = [[A,B,C]]

. This type of matrix multiplication is often denoted by the � symbol. For instance,

A�B = [a1|a2| . . . |an]� [b1|b2| . . . |bn] = [a1 ◦ b1|a2 ◦ b2| . . . |an ◦ bn]

The example below, from Bader and Kolda (2009), demonstrates why the rank of a matrix
is difficult to determine precisely. In this example a CP decomposition over the real and
complex fields is performed for A ∈ R2×2×2 where A1 and A2 are the frontal slices of A [3].

A1 =

[
1 0
0 1

]
A2 =

[
0 1
−1 0

]
The rank decomposition over R is A = [[A,B,C]], where

A =

[
1 0 1
0 1 −1

]
B =

[
1 0 1
0 1 1

]
C =

[
1 1 0
−1 1 1

]
but over C

A =
1√
2

[
1 1
−i i

]
B =

1√
2

[
1 1
i −i

]
C =

[
1 1
i −i

]
This leads to a very surprising property, the rank of a tensor can be different over R and

C. For this reason I have restricted the definitions to R to remove this ambiguity.
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Performing a CP decomposition on a 3rd order tensor A is a matter of performing a
Alternating Least Squares (ALS) routine to minimize ||A(1) −A(C�B)T ||. To perform an
ALS routine on this system, the system is divided into 3 standard least squares problems
where 2 of the 3 matrices are held constant and the third is solved for. The main problem in
implementing an ALS routine such as this, is choosing initial values for the two matrices that
are held constant to initialize the first least squares problem. This method may take many
iterations to converge, the point of convergence is heavily reliant on the initial guess, and
the computed solution is not always accurate. Faber, Bro, and Hopke (2003) investigated
six methods as an alternative to the ALS method and none of them came out more effective
than ALS in terms of accuracy of solution, but some did converge faster [6]. In addition,
derivative methods have been developed that are superior to the ALS method in terms of
convergence and solution accuracy but are much more computationally expensive [3]. For
quantum mechanical problems involving a few 3 × 3 × 3 tensors accuracy is paramount to
computational expense. One such algorithm is the PMF3 algorithm described in Paatero
(1997) which computes changes to all three matrices simultaneously. This allows for faster
convergence than the ALS method and optional specificity for non-negative solutions reduces
divergence in systems that are known to have positive solutions [5].

3 Application to Quantum Chemistry

3.1 Introduction of the Problem

In the field of quantum chemistry, linear algebra is heavily utilized and higher order ten-
sors can arise in some specialized problems. In my personal experience, I have encountered
3rd-order tensors while working with the spectroscopic properties of molecules. In practice
the issues arise when trying to manipulate 3rd-order tensors, and specifically when trying
to rotate a 3rd-order tensor analogous to how a matrix would be rotated for a change in
coordinates. For these problems the 3rd-order tensors can arise as an outer product between
a matrix and a vector that represent the polarizability and dipole moment, respectively, of
a molecule, the outer product of which is the hyperpolarizability tensor. In this case the
method used to rotate the hyperpolarizability tensor is to rotate the vector and matrix inde-
pendently and then recalculating the outer product after each rotation. This method maybe
more computationally expensive and could result in numerical inaccuracies after repeated
iterations, especially when dealing with small values. This solution is the only one that could
be found by my colleagues and me. The true issue arises when the hyperpolarizability tensor
is calculated independently by the computational program unless an intuitive user explicitly
specifies the separate polarizability and dipole moments, but even then the outer product of
the polarizability and dipole moment is only approximately equal to the hyperpolarizability
tensor. For this reason it is desirable to have a way to rotate the hyperpolarizability tensor
independently.
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3.2 Rotation Matrices

In the context of linear algebra and quantum chemistry, a rotation matrix is a matrix that
is used to rotate a set of points in space. In the specific context of spectroscopy, a rotation
matrix is used to rotate a molecules properties, such as hyperpolarizability represented by
a 3rd-order tensor, about an axis or axes. This process is done to orientationally average
molecules over axes that are known to allow free rotation. The rotation matrix commonly
used to do this is below and the corresponding axes of rotation are shown in Figure 3 [2],

R =

cos(φ) cos(ψ)− cos(θ) sin(φ) sin(ψ) − cos(θ) cos(ψ) sin(φ)− cos(φ) sin(ψ) sin(θ) sin(φ)
cos(ψ) sin(φ) + cos(θ) cos(φ) sin(ψ) cos(θ) cos(φ) cos(ψ)− sin(φ) sin(ψ) − cos(φ) sin(θ)

sin(θ) sin(ψ) cos(ψ) sin(θ) cos(θ)


It is immediately evident that the rotation matrix gets complex quickly when rotating an
object in 3 dimensions around 3 rotational axes. Despite the complexity, this matrix still
maintains a very nice property that all rotational matrices have in common, they are unitary.
This is significant because it gives us an easy-to-find inverse for an otherwise complex looking
matrix and determinant 1 guarantees the matrix operated on by the rotation matrix will not
be stretched or compressed.

Figure 3: Axes of rotation as described in Wang et al. (2005)[2]

3.3 Rotation by CP Decomposition

The most natural solution to this problem after reviewing the decompositions of higher
order tensors is to use a CP decomposition. Above it is shown that the CP decomposition
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produces a sum of vectors, so to rotate a 3rd order tensor we can simply rotate each of the
vectors individually by the same angle and then perform the necessary outer products and
summations to form the rotated 3rd order tensor. This is mathematically illustrated for the
case of X ∈ R3×3×3 where there exists a CP decomposition. In this particular problem we
also know that using a value of r = 3 will provide an exact decomposition because the tensor
should be the outer product of a 3×3 matrix and vector in R3 so the resulting tensor should
have the same rank as the matrix. Since the matrix is a calculated numerical matrix, its
rank is almost certainly 3, thus the tensor rank is 3. Fortunately in this situation, unlike
most, the tensor rank is unambiguous so we can write,

X =
3∑

j=1

aj ◦ bj ◦ cj

. Then,

XRot =
3∑

j=1

(Raj) ◦ (Rbj) ◦ (Rcj)

= [Ra1|Ra2|Ra3]� [Rb1|Rb2|Rb3]� [Rc1|Rc2|Rc3]
= R[a1|a2|a3]�R[b1|b2|b3]�R[c1|c2|c3]
= RA�RB�RC

= [[RA, RB, RC]]

This results in only an additional 3 matrix multiplications, which are computationally cheap,
but the CP decomposition is computationally expensive. In this case where our 3rd-order
tensor is relatively small, the more accurate but more computationally intense PMF3 algo-
rithm can be utilized over the ALS method. This is very beneficial because often in these
computations every decimal point is significant and sometimes the number are very small
making it more difficult to distinguish between a numerical zero and a significant number.
Another thing to keep in mind is that this procedure only applies to a 3× 3× 3 system or a
2×2×2 (with a 2×2 rotational matrix) because rotational matrices have no larger analogs,
so the tensors will always be relatively small. However, the decomposition is still nontrivial
and is not guaranteed to converge in every situation.

3.4 Proposal of a 3rd-Order Rotational Tensor

Disclaimer: This portion is not necessarily mathematically accurate and will be rather con-
versational.

After spending hours searching, I have been unable to come across a higher order tensor
analog to a rotational matrix. In the literature they repeatedly refer to rotating a 3rd-order
tensor as,

X ′ijk = RliRmjRnkXlmn

but have never been able to find the matrices that behave in this manner plus I would expect
that the 3rd-order tensor would have to be rotated by another 3rd-order tensor. For this
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reason I have been trying to figure out a way to construct a rotational tensor. While working
with the CP decomposition and rotation by multiplying each of the vectors with a rotational
matrix, I thought what if I did a similar routine multiplying different combinations of the
standard unit vectors with a rotational matrix to form the entries of a 3rd-order rotational
tensor.

R =
∑

Rei ◦Rej ◦Rek

It is often said it is good enough to see what a matrix/linear transformation does on a basis,
so if the right basis was used this could be used to form a 3rd-order rotational tensor. In
addition, after such a tensor is created, it would be difficult to define it as a rotational tensor
because it is hard to translate the concepts like unitary, inverse, and determinant into terms
of a higher order tensor.
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