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Introduction

A module, in short is a generalization of a vector space. One
may ask, why do we care?

1. In general, it is good to generalize mathematical structures.

2. The mathematics you will see here is typical of what might
go on in an abstract algebra course.

3. You can apply them to generate canonical forms of
matrices.

4. They are cool.
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Defining a Module

A module is a generalization of a vector space. Instead of
our scalers coming from a field, they come from a ring.

A field is just a ring with additional structure added. So
similarly, a vector space is a “very structured” module.

Before we can define a module we need to introduce the
concept of a ring and of a group.



Introduction Defining a Module Module Properties Modules Over Principle Ideal Domains Conclusion References

Defining a Module

A module is a generalization of a vector space. Instead of
our scalers coming from a field, they come from a ring.

A field is just a ring with additional structure added. So
similarly, a vector space is a “very structured” module.

Before we can define a module we need to introduce the
concept of a ring and of a group.



Introduction Defining a Module Module Properties Modules Over Principle Ideal Domains Conclusion References

Defining a Module

A module is a generalization of a vector space. Instead of
our scalers coming from a field, they come from a ring.

A field is just a ring with additional structure added. So
similarly, a vector space is a “very structured” module.

Before we can define a module we need to introduce the
concept of a ring and of a group.



Introduction Defining a Module Module Properties Modules Over Principle Ideal Domains Conclusion References

What is a Field?

Let us work backwards from a familiar object, a field!

Definition

A field is a set F along with two operations multiplication (·)
and addition (+) such that the following hold...

Closure: For all a, b ∈ F , a+ b and a · b are in F .

Associativity: For all a, b, c ∈ F , (a+ b) + c = a+ (b+ c)
and (a · b) · c = a · (b · c)
Commutativity: For all a, b ∈ F , a+ b = b+ a and
a · b = b · a.

Identities: There are identity elements 0 and 1 in f , such
that for all f ∈ F , 0 + f = f and 1 · f = f .

Inverses: For all f ∈ F , there exist elements −f ∈ F and
f−1 ∈ F such that f +−f = 0 and f · f−1 = 1.

Distribution: For all a, b, c ∈ F , a · (b+ c) = a · b+ a · c.
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What is a Ring?

A ring R, is very similar to a field. We still have two
operations, but we abandon the following...

(i) Multiplication does not need to commute.

(ii) There does not need to be a multiplicative identity 1.

(iii) Given an element r ∈ R, there does not need to be a
multiplicative inverse.
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Examples

Example

Z, with “regular” addition and multiplication.

Example

Zn with modular addition and multiplication.

Example

M2(R), the set of all 2× 2 matrices with real coefficients under
matrix addition and multiplication.
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What is a Group

A group G is one of the simplest algebraic structures to define.
It only has one operator, and it does not need to be
commmunative. All that remains is...

(i) Closure

(ii) Associativity

(iii) Identity

(iv) Inverses

Note, if a group has an operation that is commutative, we say
that it is an abelian group.
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What is a Module?

Definition

If R is a commutative ring, then an R-module is an abelian
group M equipped with a scalar multiplication R×M →M ,
denoted by (r,m)→ rm, such that the following axioms hold
for all m,m′ ∈M and all r, r′, 1 ∈ R:

(1) r(m+m′) = rm+ rm′

(2) (r + r′)m = rm+ r′m

(3) (rr′)m = r(r′m)

(4) 1m = m.
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Simple Example

Example

If we let R = Z and let our underlying group G = Z6, then we
have a Z-module, where scaler multiplication is defined as group
exponentiation.

Example (Calculation)

4(2 + 3) = 4(5) = 54 = 5 + 5 + 5 + 5 = 20 ≡6 2

Note: We could actually let G be any abelian group, and we
could still define a Z-module with scaler multiplication defined
as exponentiation.
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Exotic Example

Here we give a more interesting example.

First note that if k is a field, then k[x], the set of
polynomials with coefficients in k is a commutative ring
(this is a basic result from ring theory). We can now create
a k[x]-module given a linear transformation T : V → V
where V is a finite dimensional vector space over k.

We now define scaler k[x]× V → V multiplication as...
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Exotic Example

Given f(x) =
∑m

i=0 cix
i ∈ k[x], then

f(x)v =

(
m∑
i=0

cix
i

)
v =

m∑
i=0

ciT
i(v)

where T 0 is the identity map 1v, and T i is the composite of T
with itself i times if i ≥ 1. We denote V when viewed under a
k[x] module by V T .

The module defined above is extremely important for deriving
canonical forms.
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Overview

Many of the structural concepts from vector spaces have
analogous concepts in modules. Namely...

Instead of subspaces, we have submodules.

Instead of linear transformations, we have R-maps.

Both have a kernel.

Both have a direct and internal direct sum.

Instead of having a finite bases, a module is finitely
generated (this might be a stretch).
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Cyclic Submodules

A submodule is exactly how you think it would be.

Definition

N is a submodule of R-module M if whenever n1, n2 ∈ N , then
n1 + n2 ∈ N and rn ∈ N for all r ∈ R and n ∈ N .

Definition

If M is an R-module and m ∈M , then the cyclic submodule
generated by m is

〈m〉 = {rm : r ∈ R}.

A module is cyclic if M = 〈m〉 for some m. This is “like”
having a basis with dimension 1.
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Cyclic Submodules

We can have more than one element generating a submodule as
well.

Definition

A submodule generated by a set X is

〈X〉 =

{∑
finite

rixi : ri ∈ R and xi ∈ X

}
.

If X is a finite set and M = 〈X〉, this is like a vector space
having a finite basis. Note however, that a smaller set X could
generate the same submodule, and so it is not completely
analoguous.
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Examples

Example

Our example before where R = Z and G = Z6 is cyclic, since 1
added with itself multiple times can generate everything in the
group. If G = Z, then 1 and −1 would each be generators.

Example

Remember that every vector space is actually a special type of
module. In particular our good friend Cn is a module. But
when n ≥ 2, Cn is not cyclic, since its dimension is greater than
1.
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Overview

We now start to restrict our attention to modules over principle
ideal domains. A PID is basically a ring where quotient
structures are easily expressed which forces nice factorization
properties. By restricting our attention we hope to...

Generalize more group structures.

Develop decompositions for modules.

Set the groundwork for the development of canonical forms.
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The Annihilator

An element in a group has an order. Here we extend this
notion to modules

Definition

If M is R-module, and m ∈M , then its annihilator is

ann(m) = {r ∈ R : rm = 0}.

If ann(m) 6= {0} then we say m has a finite order, otherwise it
has an infiite order. Note that the annihilator forms an ideal,
and using the first isomorphism theorem with the R-map
f : R→ 〈m〉 where f(r) = rm we can derive 〈m〉 ∼= R/ann(m).
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Torsion Submodules

Definition

If M is an R-module, and R is an integral domain, then its
torsion submodule tM is defined by

tM = {m ∈M : m has finite order}

Definition

A module is torsion if tM = M and torsion-free if tM = {0}.
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tM is a Torsion Submodule over an Integral Domain

Proposition

If R is an integral domain (a commutative ring where if ab = 0,
a = 0 or b = 0) and M is an R-module, then tM is a submodule
of M .

Proof.

All we must show is that tM is closed under both addition and
scaler multiplication defined in M . Take m,m′ ∈ tM , then
there exists elements r, r′ ∈ R such that rm = 0 and rm′ = 0.
Now rr′(m+m′) = 0. Since rr′ 6= 0, (m+m′) has a nonzero
annihilator. Now take s ∈ R and m ∈ tM , then again there is
an R such thatt rm = 0. Now with some massaging

r(sm) = (rs)m = (sr)m = s(rm) = 0

so sm ∈ tM as well.
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V T is Torsion

Recall our example V T which formed a k[x]-module.

Proposition

Given a finite dimensional vector space V over a field k and a
linear transformation T : V → V , the k[x]-module V T is
torsion.

Proof.

We want to show that for any element in V T , there is an
element in its annihilator. Let the dimension of V = n and take
v ∈ V T , then the set {v, T (v), . . . , Tn(v)} must be linearly
dependant. So there is a nontrivial solution using scalars
a0, a1, . . . , an such that

∑n
i=0 aiT

i(v) = 0. This implies the
nonzero polynomial p(x) =

∑n
i=0 aix

i ∈ ann(v)
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Splitting the Free and Torsion Parts

Definition

An R-module F is called a free R-module if F is isomorphic to
a direct sum of multiple R’s. More precisely, given an index set
I

F =
∑
i∈I

Ri

where Ri = 〈bi〉 ∼= R for all i ∈ I.

Theorem (Seperating Decomposition)

If R is a PID, the every finitely generated R-module M is a
direct sum

M = tM ⊕ F.
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Primary Decomposition of Modules

Definition

Let R be a PID and M be an R-module. If P = 〈p〉 is a
non-zero prime ideal in R, then M is 〈p〉-primary if for each
m ∈M , there is an n ≥ 1 such that pnm = 0. M ’s 〈p〉-primary
component is

MP = {m ∈M : pnm = 0 for some n ≥ 1}.

Theorem (Primary Decomposition of Modules)

Every finitely generated torsion R module M , where R is a PID,
is a direct sum of its P -primary components. Symbolically,

M =
∑
P

MP
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Basis Theorem

Theorem

If R is a PID, then every finitely generated R-module M is a
direct sum of cyclic modules in which each cyclic summand is
isomorphic to R or is primary.

Outline.

Given an R module, M ...

1. First use our Seperating Theorem to write M = tM ⊕ F .
All that matters now is tM .

2. Use our Primary Decomposition Theorem to write
tM =

∑
P MP .

3. Finish by showing each MP is cyclic.
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Isomorphic Modules have Isomorphic Components

Proposition

Two finitely generated torsion modules M and M ′ over a PID
are isomorphic if and only if MP

∼= M ′P for every nonzero
prime ideal P .

Proof.

(⇒) Let f : M →M ′ be an R-map. If we take m ∈MP where
P = 〈p〉, then pkm = 0 for some k ≥ 1. Now because f is an
R-map,

pkf(m) = f(pkm) = f(0) = 0

which implies pkf(m) ∈M ′P and f(MP ) ⊆M ′P . Similarly
f−1(M ′P ) ⊆MP which shows that f restricted to MP maps
onto M ′P
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Proof Continued

Proof.

(⇐) If we have MP = M ′P for all P , then we can define an
isomorphism between M and M ′ using our Primary
Decomposition Theorem. Let φP denote an isomorphism
between MP and MP ′ , then φ : M →M ′ defined as

φ(m) = φ

(∑
P

MP

)
=
∑
P

φP (MP )

is an isomorphism.
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The Fundemental Theorem of Finitely Generated
Abelian Groups

Theorem (Judson: Fundemental Theorem of Finitely Generated
Abelian Groups)

Every Finitely generated abelian group G is isomorphic to a
direct product of cyclic groups of the form

Zp
α1
1
× Zp

α2
2
× · · · × Zpαnn × Z× · · · × Z

This theorem follows as a corollary from the Basis Theorem if
we let our R be Z and let our scaler multiplication be
exponentiation.
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The End

The End!
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