Chapter VS
Show all of your work and explain your answers fully. There is a total of 90 possible points.
You may use Sage to manipulate and row-reduce matrices. Be sure to make it clear what you have input to Sage, and show any output you use to justify your answers.

1. Does the set $S$ span the vector space of $2 \times 3$ matrices, $M_{23}$ ? ( 10 points)

$$
S=\left\{\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
-3 & -5 & -6 \\
2 & -1 & -6
\end{array}\right],\left[\begin{array}{ccc}
-3 & -4 & -4 \\
4 & -3 & -7
\end{array}\right],\left[\begin{array}{ccc}
1 & -1 & -5 \\
-8 & 2 & 4
\end{array}\right],\left[\begin{array}{ccc}
3 & 6 & 8 \\
5 & -5 & 0
\end{array}\right]\right\}
$$

2. Is the set $T$ linearly independent in the vector space of polynomials with degree 2 or less, $P_{2}$ ? ( 10 points)

$$
T=\left\{x^{2}+3 x+3,2 x^{2}+7 x+6,2 x^{2}+4 x+7\right\}
$$

3. Is the set $R$ a basis of the vector space $\mathbb{C}^{4}$ ? (10 points)

$$
R=\left\{\left[\begin{array}{c}
-1 \\
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-3 \\
2 \\
5 \\
2
\end{array}\right],\left[\begin{array}{c}
-4 \\
3 \\
5 \\
2
\end{array}\right],\left[\begin{array}{c}
4 \\
-4 \\
-2 \\
-5
\end{array}\right]\right\}
$$

4. Prove that the set $W=\left\{\left.\left[\begin{array}{l}a \\ b\end{array}\right] \right\rvert\, 3 a+5 b=0\right\}$ is a subspace of the vector space of column vectors $\mathbb{C}^{2}$. (15 points)
5. The set $W=\left\{a+b x+c x^{2} \mid a+2 b-3 c=0\right\}$ is a subspace of the vector space of polynomials in $x$ with degree 2 or less, $P_{2}$. (You may assume this.) Determine, with verification, a basis of $W$. ( 20 points)
6. Suppose that the set $S=\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a linearly independent subset of the vector space $V$. Prove that the set $T=\{3 \mathbf{u}+4 \mathbf{v}-8 \mathbf{w},-\mathbf{u}-\mathbf{v}+2 \mathbf{w}, 2 \mathbf{u}+2 \mathbf{v}-3 \mathbf{w}\}$ is linearly independent in $V$. (15 points)
7. Suppose that $R=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$ spans the vector space $\mathbb{C}^{n}$ and that $A$ is an $n \times n$ nonsingular matrix. Prove that $P=\left\{A \mathbf{v}_{1}, A \mathbf{v}_{2}, \ldots, A \mathbf{v}_{m}\right\}$ spans $\mathbb{C}^{n}$. (10 points)
