Chapter R
Show all of your work and explain your answers fully. There is a total of 90 possible points.
You may use Sage to manipulate matrices and vectors, and compute reduced row-echelon form, inverses, determinants and eigen-stuff. Be sure to make it clear what you have input to Sage, and show any output you use to justify your answers. \mathbb{C}^{n} is the vector space of column vectors with n entries, P_{n} is the vector space of polynomials with degree at most n and $M_{m n}$ is the vector space of $m \times n$ matrices.

1. Compute the matrix representation of T relative to the bases B and $C, M_{B, C}^{T}$. (15 points)

$$
\begin{aligned}
& T: P_{1} \rightarrow M_{12}, \quad T(a+b x)=\left[\begin{array}{ll}
2 a+b & a-b
\end{array}\right] \\
& B=\{1+2 x, 3-x\} \quad C=\left\{\left[\begin{array}{ll}
1 & 2
\end{array}\right],\left[\begin{array}{ll}
3 & 5
\end{array}\right]\right\}
\end{aligned}
$$

2. Use vector representations to efficiently answer the following questions. (15 points)
(a) Is $S=\left\{1-4 x+8 x^{2}, 1-3 x+6 x^{2},-1+4 x-7 x^{2}\right\}$ a linearly independent set in P_{2} ?
(b) Does the set $Q=\left\{-7-3 x+x^{2},-5-2 x+x^{2},-3-x+x^{2}\right\}$ span P_{2} ?
3. Use a matrix representation for the following questions about the linear transformation T. (30 points)
$T: M_{22} \rightarrow P_{2}, \quad T\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=(-7 a-5 b+10 c-31 d)+(-2 a-b+2 c-8 d) x+(-3 a-2 b+4 c-13 d) x^{2}$
(a) Compute the kernel of $T, \mathcal{K}(T)$.
(b) Based on your answer to the previous question, is T injective?
(c) Find two vectors \mathbf{x} and \mathbf{y} such that $T(\mathbf{x})=T(\mathbf{y})$.
(d) Compute the dimension of the range of $T, \operatorname{dim}(\mathcal{R}(T))$.
(e) Based on your answer to the previous question, is T surjective?
(f) Find a vector x whose preimage, $T^{-1}(\mathrm{x})$, is empty.
4. Determine a basis B for P_{2} so that the matrix representation of S relative to B is a diagonal matrix. (15 points)
$S: P_{2} \rightarrow P_{2}, \quad S\left(a+b x+c x^{2}\right)=(-23 a+12 b+6 c)+(-48 a+25 b+12 c) x+(12 a-6 b-2 c) x^{2}$
5. Compute an explicit formula for L^{-1}. (You may assume L is invertible.) (15 points)
$L: \mathbb{C}^{3} \rightarrow P_{2}, \quad L\left(\left[\begin{array}{l}a \\ b \\ c\end{array}\right]\right)=(3 a-b+3 c)+(4 a-b+3 c) x+(4 a+2 b-7 c) x^{2}$
